10.已知函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$,則f(-3)=( 。
A.1B.-1C.2D.-2

分析 函數(shù)性質(zhì)求解.

解答 解:∵f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$,
∴f(-3)=$\sqrt{-3+3}+\frac{1}{-3+2}$=-1.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=(x2-3x+2)lgx+2015x-2016,則f(x)的零點所在的區(qū)間是( 。
A.($\frac{1}{10}$,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{3}{1+|x|}$+$\frac{3}{1+|x-2|}$,則方程f[f(x)]=$\frac{10}{3}$的實數(shù)解的個數(shù)是( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.sin$\frac{17π}{4}$的值是( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過點M(0,2)的直線l與拋物線y2=-4x交于A,B兩點,與x軸交于點C,則有( 。
A.|MA|+|MB|=2|MC|B.|MA|•|MB|=|MC|2C.|MA|=|MB|•|MC|D.|MA|2=|MB|2+|MC|2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(Ⅰ)$\overrightarrow{a}$•$\overrightarrow$和|$\overrightarrow{a}$+$\overrightarrow$|的值;
(Ⅱ)$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知兩條直線l1:x-ay=0(a≠0),l2:x+y-3=0.
(1)若l1⊥l2,求a的值;
(2)在(1)的條件下,如果直線l3經(jīng)過l1與l2的交點,且經(jīng)過點A(2,4),求直線l3的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,AB=2AC=2,AD是BC邊上的中線.
(Ⅰ)求sin∠CAD:sin∠BAD;
(Ⅱ)若∠B=30°,求AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算:
(1)$\frac{{m+{m^{-1}}+2}}{{{m^{-\frac{1}{2}}}+{m^{\frac{1}{2}}}}}$
(2)$\frac{lg8+lg125-lg2-lg5}{lg\sqrt{10}lg0.1}$.

查看答案和解析>>

同步練習冊答案