10.設(shè)m=10,n=20,則可以實現(xiàn)m、n的值互換的程序是(  )
A.m=10  n=20   n=m  m=n
B.m=10  n=20   s=m   n=s
C.m=10  n=20   s=m   m=n  n=s
D.m=10  n=20   s=m   t=n   n=s    m=n

分析 分析各選項中程序中各變量、各語句的作用,得出C選項中程序的作用是實現(xiàn)m、n的值互換.

解答 解:對于C:此程序運行的結(jié)果是:m、n的值分別為:20,10,
能夠?qū)崿F(xiàn)m、n的值互換,
其它選項均不能實現(xiàn)m、n的值互換.
故選:C.

點評 本題主要考查了根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,在△ABC中,點O是BC的中點,過點O的直線分別交直線AB,AC于不同的兩點M,N,若$\overrightarrow{AB}$=$\frac{3}{5}$$\overrightarrow{AM}$,$\overrightarrow{AC}$=m$\overrightarrow{AN}$,則m的值為$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.3π+4B.4π+2C.$\frac{9π}{2}$+4D.$\frac{11π}{2}$+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若$|{\overrightarrow{AB}+\overrightarrow{AC}}|=|{\overrightarrow{AB}-\overrightarrow{AC}}|$,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形C.等邊三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面上的一組基底,
(1)已知$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三點共線,求實數(shù)λ的值;
(2)若$\overrightarrow{e_1},\overrightarrow{e_2}$是夾角為60°的單位向量,$\overrightarrow a=\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow b=-2λ\overrightarrow{e_1}-\overrightarrow{e_2}$,當(dāng)-3≤λ≤5時,求$\overrightarrow a•\overrightarrow b$的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知橢圓的方程為:$\frac{x^2}{4}+\frac{y^2}{3}=1$,點P的坐標(biāo)為$(1,\frac{3}{2})$,一條不過點P直線l:y=kx+b交橢圓于A,B,PA⊥PB,且AB被y軸平分,則直線l的方程為y=$±\frac{3}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,試問:
(1)當(dāng)a=1時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若q是p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個算法的程序框圖如圖所示,則該程序輸出的結(jié)果為( 。
A.$\frac{1}{100}$B.$\frac{1}{121}$C.$\frac{99}{100}$D.$\frac{120}{121}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|-1<x≤3},集合B={x|0≤x<4}.求
(1)A∩B;
(2)A∪B;
(3)A∩(∁RB);
(4)∁R (A∪B).

查看答案和解析>>

同步練習(xí)冊答案