已知復數(shù)z滿足|z|=1,則|z+iz+1|的最小值為
2
-1
2
-1
分析:設z=cosx+sinx,則|z+iz+1|=
[1+
2
cos(x+
π
4
)]2+2sin2(x+
π
4
)  
=
3+2
2cos(x+
π
4
)
3-2
2
=
2
-1.
解答:解:設z=cosx+sinx,|z+iz+1|=
[1+
2
cos(x+
π
4
)]2+2sin2(x+
π
4
)  

=
3+2
2cos(x+
π
4
)

3-2
2

=
2
-1.
當x
4
時取得最小值
2
-1.
所以|z+iz+1|的最小值為
2
-
1.
故答案為:
2
-1
點評:本題考查復數(shù)的代數(shù)表示,解題時要認真審題,注意復數(shù)的幾何意義的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知復數(shù)z滿足|z|=1,則|z+4i|的最小值為
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•香洲區(qū)模擬)已知復數(shù)z滿足z•i=2-i,i為虛數(shù)單位,則z=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足|z-2|=2,z+
4z
∈R,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足Z=
3i
3
+3i
,則z對應的點Z在第
象限.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年上海市浦東新區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知復數(shù)z滿足z=(-1+3i)(1-i)-4.
(1)求復數(shù)z的共軛復數(shù);
(2)若w=z+ai,且|w|≤|z|,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案