【題目】已知橢圓的離心率為,其短軸的兩個端點與長軸的一個端點構(gòu)成的三角形的面積為

1)求橢圓的標準方程;

2)直線與圓相切,并與橢圓交于不同的兩點,若為坐標原點),求線段長度的取值范圍.

【答案】1 ;(2

【解析】

1)橢圓的離心率和其短軸的兩個端點與長軸的一個端點構(gòu)成的三角形的面積,得,方程組求解,即可寫出橢圓方程.

2)直線與圓相切得,再聯(lián)立直線和橢圓,得到關(guān)于的一元二次方程,利用由韋達定理分別得到,,,將表示為關(guān)于的函數(shù),再求取值范圍.

1橢圓的離心率為,

,即,

其短軸的兩個端點與長軸的一個端點構(gòu)成的三角形的面積為

,即,

,

①②③,,,

橢圓方程為

2直線與圓相切,

,即,

直線與橢圓交于不同的兩點,設(shè),,,,

聯(lián)立,得,

,

,,

,

,

又因為,

把上面 代入上式,得,

,又,

,∴,

,所以,

線段長度的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)橢圓的左,右焦點分別為,左,右頂點分別為,點,,為橢圓上位于軸上方的兩點,且,直線的斜率為,記直線的斜率分別為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海濕地如圖所示,A、BCD分別是以點O為中心在東西方向和南北方向設(shè)置的四個觀測點,它們到點O的距離均為公里,實線PQST是一條觀光長廊,其中,PQ段上的任意一點到觀測點C的距離比到觀測點D的距離都多8公里,QS段上的任意一點到中心點O的距離都相等,ST段上的任意一點到觀測點A的距離比到觀測點B的距離都多8公里,以O為原點,AB所在直線為x軸建立平面直角坐標系xOy.

(1)求觀光長廊PQST所在的曲線的方程;

(2)在觀光長廊的PQ段上,需建一服務(wù)站M,使其到觀測點A的距離最近,問如何設(shè)置服務(wù)站M的位置?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司推出一新款手機,因其功能強大,外觀新潮,一上市便受到消費者爭相搶購,銷量呈上升趨勢.散點圖是該款手機上市后前6周的銷售數(shù)據(jù).

(Ⅰ)根據(jù)散點圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測該款手機第8周的銷量;

(Ⅱ)為了分析市場趨勢,該公司市場部從前6周的銷售數(shù)據(jù)中隨機抽取2周的數(shù)據(jù),求抽到的這2周的銷量均在20萬臺以下的概率.

參考公式:回歸直線方程,其中:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABSCD中,四邊形ABCD為矩形,AB1,△BSC為邊長為2的正三角形,將△BSC沿BC折起,使得側(cè)面SAD垂直于平面ABCDE、F分別為SADC的中點.

1)求證:EF∥面SBC;

2)求四棱錐SABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長方形區(qū)域,,在邊的中點處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.

1)求關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinπx,g(x)=x2﹣x+2,則( 。

A. 曲線y=f(x)+g(x)不是軸對稱圖形

B. 曲線y=f(x)﹣g(x)是中心對稱圖形

C. 函數(shù)y=f(x)g(x)是周期函數(shù)

D. 函數(shù)最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式有且僅有兩個正整數(shù)解(其中e=2.71828… 為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )

A. ,] B. ,] C. [, D. [,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面是正三角形、側(cè)棱垂直于底面的三棱柱ABCA1B1C1中,底面邊長為a,側(cè)棱長為2a,點MA1B1的中點.

1)證明:MC1AB1

2)求直線AC1與側(cè)面BB1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案