某物體的運(yùn)動(dòng)方程為s=5-2t2,則改物體在時(shí)間[1,1+d]上的平均速度為( 。
A、2d+4B、-2d+4
C、2d-4D、-2d-4
考點(diǎn):變化的快慢與變化率
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用平均變化率的公式
f(x+△x)-f(x)
△x
代入數(shù)據(jù),計(jì)算可求出平均速度.
解答:解:平均速度為
.
v
=
5-2(1+d)2-5+2×12
1+d-1
=-4-2d.
故選:D.
點(diǎn)評(píng):本題考查函數(shù)的平均變化率公式
f(x+△x)-f(x)
△x
.注意平均速度與瞬時(shí)速度的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

棱長為1的正方體ABCD-A1B1C1D1被以A為球心,AB為半徑的球相截,則所截得幾何體(球內(nèi)部分)的表面積為( 。
A、
4
B、
8
C、π
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

底面為正方形的四棱柱的側(cè)棱垂直于底面,若此四棱柱的底面邊長為1且各個(gè)頂點(diǎn)在一個(gè)直徑為2的球面上,那么該棱柱的表面積為( 。
A、1+4
2
B、2+4
2
C、8
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為2的正方體(上底面無蓋)內(nèi)部有一個(gè)球,與其各個(gè)面均相切,在正方體內(nèi)壁與球外壁間將滿水,現(xiàn)將球向上提升,當(dāng)球恰好與水面相切時(shí),則正方體的上底面截球所得圓的面積等于( 。
A、
π3
9
B、
π2(6-π)
9
C、
6π-π3
3
D、
π3-2π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) 四棱錐S-ABCD的底面是矩形,錐頂點(diǎn)在底面的射影是矩形對(duì)角線的交點(diǎn),四棱錐及其三視圖如圖(AB平行于主視圖投影平面)則四棱錐S-ABCD的體積=( 。
A、24
B、18
C、
8
5
3
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=5x+4在區(qū)間[0,1]上的平均變化率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用分?jǐn)?shù)法優(yōu)選時(shí),做6次實(shí)驗(yàn)最多可以處理( 。﹤(gè)試點(diǎn)問題.
A、20B、21C、22D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(-2,m),
b
=(1,2),且
a
b
,則|
a
+3
b
|等于( 。
A、
5
B、2
5
C、3
5
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的首項(xiàng)a1=1,公比q≠1,且a2,a1,a3成等差數(shù)列,則其前5項(xiàng)的和S5=( 。
A、31B、15C、11D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案