科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知橢圓C:的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B.(1)求橢圓C的方程;(2)設(shè)P為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)||<時,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知橢圓C:的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B. (1)求橢圓C的方程;(2)設(shè)P為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)||<時,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆陜西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關(guān)于點M對稱,求直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)已知橢圓C:的左、右頂點的坐標(biāo)分別為,,離心率。
(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點分別為,,若直線與橢圓交于、兩點,證明直線與直線的交點在直線上。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com