【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 與 互相垂直;
(2)若k 與 ﹣k 的長度相等,求β﹣α的值(k為非零的常數(shù)).
【答案】
(1)證明:由題意得: + =(cosα+cosβ,sinα+sinβ)
﹣ =(cosα﹣cosβ,sinα﹣sinβ)
∴( + )( ﹣ )=(cosα+cosβ)(cosα﹣cosβ)+(sinα+sinβ)(sinα﹣sinβ)
=cos2α﹣cos2β+sin2α﹣sin2β=1﹣1=0
∴ + 與 ﹣ 互相垂直
(2)證明:解:方法一:k + =(kcosα+cosβ,ksinα+sinβ),
﹣k =(cosα﹣kcosβ,sinα﹣ksinβ)
|k + |= ,| ﹣k |=
由題意,得4cos(β﹣α)=0,
因為0<α<β<π,
所以β﹣α= .
方法二:由|k + |=| ﹣k |得:|k + |2=| ﹣k |2
即(k + )2=( ﹣k )2,k2| |2+2k +| |2=| |2﹣2k +k2| |2
由于| |=1,| |=1
∴k2+2k +1=1﹣2k +k2,故 =0,
即(cosα,sinα)(cosβ,sinβ)=0(10分)
即cosαcosβ+sinαsnβ=4cos (β﹣α)=0
因為0<α<β<π,
所以β﹣α=
【解析】(1)根據(jù)已知中向量 , 的坐標(biāo),分別求出向量 + 與 ﹣ 的坐標(biāo),進(jìn)而根據(jù)向量數(shù)量積公式及同角三角函數(shù)的平方關(guān)系,可證得 與 互相垂直;(2)方法一:分別求出k 與 ﹣k 的坐標(biāo),代入向量模的公式,求出k 與 ﹣k 的模,進(jìn)而可得cos(β﹣α)=0,結(jié)合已知中0<α<β<π,可得答案. 方法二:由|k + |=| ﹣k |得:|k + |2=| ﹣k |2 , 即(k + )2=( ﹣k )2 , 展開后根據(jù)兩角差的余弦公式,可得cos(β﹣α)=0,結(jié)合已知中0<α<β<π,可得答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,
(1)證明:BC1⊥面A1B1CD;
(2)求直線A1B和平面A1B1CD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當(dāng)AC=3,EC=6時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍.
(2)設(shè),證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0,1,2,3,4,5這六個數(shù)字:
(1)能組成多少個無重復(fù)數(shù)字的四位偶數(shù)?
(2)能組成多少個無重復(fù)數(shù)字且為5的倍數(shù)的五位數(shù)?
(3)能組成多少個無重復(fù)數(shù)字且比1325大的四位數(shù)?(以上各問均用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗結(jié)果:
A配方的頻數(shù)分布表
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
B配方的頻數(shù)分布表
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(1)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為y=
估計用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述100件產(chǎn)品平均一件的利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com