已知a>0,函數(shù)f(x)=ax-bx2,
(1)當(dāng)b>0時(shí),若對(duì)任意x∈R都有f(x)≤1,證明:a≤2;
(2)當(dāng)b>1時(shí),證明:對(duì)任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2;
(3)當(dāng)0<b≤1時(shí),討論:對(duì)任意x∈[0, 1], |f(x)|≤1的充要條件。
證明見(jiàn)解析
(1)證:依題設(shè),對(duì)任意x∈R,都有f(x)≤1。∵f(x)=-b(x-)2+,∴f()=≤1,∵a>0, b>0, ∴a≤2。
(2)證:(必要性),對(duì)任意x∈[0, 1],|f(x)|≤1-1≤f(x)據(jù)此可推出-1≤f(1)即a-b≥-1,∴a≥b-1。對(duì)任意x∈[0, 1],|f(x)|≤1f(x)≤1,因?yàn)閎>1,可推出f()≤1。即a·-≤1,∴a≤2,所以b-1≤a≤2。
(充分性):因b>1, a≥b-1,對(duì)任意x∈[0, 1],可以推出:ax-bx2≥b(x-x2)-x≥-x
≥-1,即:ax-bx2≥-1;因?yàn)閎>1,a≤2,對(duì)任意x∈[0, 1],可推出ax-bx2≤2-bx2≤1,即ax-bx2≤1,∴-1≤f(x)≤1。
綜上,當(dāng)b>1時(shí),對(duì)任意x∈[0, 1], |f(x)|≤1的充要條件是:b-1≤a≤2。
(3)解:因?yàn)閍>0, 0<b≤1時(shí),對(duì)任意x∈[0, 1]。
f(x)=ax-bx2≥-b≥-1,即f(x)≥-1;
f(x)≤1f(1)≤1a-b≤1,即a≤b+1;a≤b+1f(x)≤(b+1)x-bx2≤1,即f(x)≤1。
所以,當(dāng)a>0, 0<b≤1時(shí),對(duì)任意x∈[0, 1],|f(x)|≤1的充要條件是:a≤b+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省石家莊市高三下學(xué)期第二次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
.(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若m=0,A(a,f(a))、B(b,f(b))是函數(shù)f(x)圖象上不同的兩點(diǎn),且a>b>0, 為f(x)的導(dǎo)函數(shù),求證:
(III)求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=loga(ax-1)(a>0且a≠1)
(1)求f(x)的定義域;
(2)討論f(x)的單調(diào)性;
(3)x為何值時(shí),函數(shù)值大于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=a-是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值;
(2)當(dāng)a=1時(shí),是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說(shuō)明理由.
(3)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知指函數(shù)ƒ(x)=ax(a>0,且a≠1)自變量與函數(shù)值 的部分對(duì)應(yīng)值如右表:
那么a=_____;若函數(shù)y=x[ƒ(x)-2],則滿足條件y>0的x的集合為_(kāi)__________________.
x | -1 | 0 | 2 |
ƒ(x) | 2 | 1 | 0.25 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com