D
分析:根據(jù)平面向量的垂直的坐標(biāo)運(yùn)算法則,我們易根據(jù)已知中的
=(x+z,3),
=(2,y-z),
⊥
,構(gòu)造出一個(gè)關(guān)于x,y,z的方程,即關(guān)于Z的目標(biāo)函數(shù),畫(huà)了約束條件|x|+|y|≤1對(duì)應(yīng)的平面區(qū)域,并求出各個(gè)角點(diǎn)的坐標(biāo),代入即可求出目標(biāo)函數(shù)的最值,進(jìn)而給出z的取值范圍.
解答:
解:∵
=(x+z,3),
=(2,y-z),
又∵
⊥
∴(x+z)×2+3×(y-z)=2x+3y-z=0,
即z=2x+3y
∵滿足不等式|x|+|y|≤1的平面區(qū)域如下圖所示:
由圖可知當(dāng)x=0,y=1時(shí),z取最大值3,
當(dāng)x=0,y=-1時(shí),z取最小值-3,
故z的取值范圍為[-3,3]
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系,簡(jiǎn)單線性規(guī)劃的應(yīng)用,其中利用平面向量的垂直的坐標(biāo)運(yùn)算法則,求出目標(biāo)函數(shù)的解析式是解答本題的關(guān)鍵.