函數(shù)y=(
1
2
)
lgcosx
的單調(diào)遞減區(qū)間是
 
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由指數(shù)函數(shù)為減函數(shù),要求復(fù)合函數(shù)的減區(qū)間,需求指數(shù)的增區(qū)間,指數(shù)中對數(shù)函數(shù)是增函數(shù),則需要求滿足
cosx大于0的增區(qū)間,則答案可求.
解答: 解:要求函數(shù)y=(
1
2
)
lgcosx
的單調(diào)遞減區(qū)間,
需求函數(shù)lgcosx的增區(qū)間,
也就數(shù)滿足cosx大于0的增區(qū)間,
由余弦函數(shù)的增區(qū)間可得:函數(shù)y=(
1
2
)
lgcosx
的單調(diào)遞減區(qū)間是(2kπ-
π
2
,2kπ],k∈Z.
故答案為:(2kπ-
π
2
,2kπ],k∈Z.
點(diǎn)評:本題考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin
a
2
=
4
5
,且sina<0,則a的終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<θ<0,且sinθ+cosθ=a,其中a∈(0,1),則關(guān)于tanθ的值,在以下四個答案中,可能正確的是(  )
A、-
1
3
B、-3
C、-
1
3
或-3
D、
1
3
或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>-1,y>0且滿足x+2y=1,則
1
x+1
+
2
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x交拋物線y=-x2+bx+c對稱軸右側(cè)的拋物線于點(diǎn)P,連接PA、PC,設(shè)△AOP的面積為S1,△COP的面積為S2
(1)①若A、C兩點(diǎn)坐標(biāo)分別為(2,0),(0,3),求拋物線y=-x2+bx+c的解析式;
②試判斷S1與S2之間的關(guān)系,并說明理由;
(2)將(1)中的拋物線沿x軸正方向平移,在平移過程中,是否存在點(diǎn)P,使S1=2S2,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),離心率為
3
2
,兩焦點(diǎn)分別為F1、F2,過F1的直線交橢圓C于M,N兩點(diǎn),且△F2MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求過點(diǎn)(1,0)且斜率為
1
2
的線l被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A′B′C′D′中,異面直線AB′和A′D所成角為( 。
A、45°B、60°
C、90°D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形ABCD中,E、F、G分別是AB、BC、CD上,且滿足AE:EB=CF:FB=2:1,CG:GD=3:1,過E、F、G的平面交AD于點(diǎn)H.
(1)求AH:HD;
(2)求證:EH、FG、BD三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

線面角與二面角的取值范圍分別是(  )
A、[0,
π
2
),[0,π)
B、[0,
π
2
),[0,π]
C、[0,
π
2
],[0,π)
D、[0,
π
2
],[0,π]

查看答案和解析>>

同步練習(xí)冊答案