如圖,AB是圓O的直徑,CA垂直圓O所在的平面,D是圓周上一點,已知AC=。AD=。

(Ⅰ)求證:平面ADC⊥平面CDB;(Ⅱ)求平面CDB與ADB所成的二面角的正切值。

 

【答案】

(Ⅰ)∵CA⊥平面ADB    ∴CA⊥BD,又D是圓周上一點,故BD⊥AD∴BD⊥平面ACD  ∵BD平面BCD    ∴平面CDB⊥平面CAD                                           

(Ⅱ)又(Ⅰ)知BD⊥平面ADC,     ∴BD⊥AD,BD⊥CD,故∠CDA就是二面角C—DB—A的平面角。又,∴平面ADB與平面ADC所成二面角的平面角的正切值為

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱的一個底面ABC內(nèi)接于圓O,AB是圓O的直徑.
(1)求證:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,求幾何體EDABC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省錦州市高考數(shù)學二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省寶雞中學2010屆高三適應(yīng)性訓練(數(shù)學理) 題型:填空題

 A.(參數(shù)方程與極坐標)

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習冊答案