分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)時 且的解集為( )
A.(-2,0)∪(2,+∞)
B.(-2,0)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-∞,-2)∪(0,2)
A
【解析】
試題分析:設(shè)F(x)=f (x)g(x),當(dāng)x<0時,?
∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.
∴F(x)在當(dāng)x<0時為增函數(shù).?
∵F(-x)=f (-x)g (-x)=-f (x)•g (x).=-F(x).?
故F(x)為(-∞,0)∪(0,+∞)上的奇函數(shù).?
∴F(x)在(0,+∞)上亦為增函數(shù).?
已知g(-3)=0,必有F(-3)=F(3)=0.?
構(gòu)造如圖的F(x)的圖象,可知
F(x)<0的解集為x∈(-∞,-3)∪(0,3).?
故選D.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古包頭市高二下學(xué)期期中Ⅰ理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知為一次函數(shù),且,則=_______..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古包頭市高二下學(xué)期期中Ⅰ文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知某工廠生產(chǎn)件產(chǎn)品的成本為(元),
問:(1)要使平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應(yīng)生產(chǎn)多少件產(chǎn)品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古包頭市高二下學(xué)期期中Ⅰ文科數(shù)學(xué)試卷(解析版) 題型:填空題
過點(diǎn)P(-1,2)且與曲線y=3x2-4x+2在點(diǎn)M(1,1)處的切線平行的直線方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古包頭市高二下學(xué)期期中Ⅰ文科數(shù)學(xué)試卷(解析版) 題型:選擇題
用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是( )
(A)假設(shè)三內(nèi)角都大于60度;
(B)假設(shè)三內(nèi)角都不大于60度;
(C)假設(shè)三內(nèi)角至多有一個大于60度;
(D)假設(shè)三內(nèi)角至多有兩個大于60度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為 (a>b>0,為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,已知曲線C1上的點(diǎn)M 對應(yīng)的參數(shù)= ,與曲線C2交于點(diǎn)D
(1)求曲線C1,C2的普通方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲線C1上的兩點(diǎn),求 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知使函數(shù)y=x3+ax2-a的導(dǎo)數(shù)為0的x值也使y值為0,則常數(shù)a的值為( )
A.0 B.±3 C.0或±3 D.非以上答案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二第二學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知集合M={x|x<3,N={x|},則M∩N=( )
A. B.{x|0<x<3 C.{x|1<x<3 D.{x|2<x<3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com