(2012•廣東模擬)已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2012)=a,則f(-2012)=( 。
分析:由f(x)+g(x)=ax-a-x+2可得f(-x)+g(-x)=a-x-ax+2,結(jié)合f(-x)=-f(x),g(-x)=g(x)可求a,及f(x),代入可求
解答:解:∵f(x)+g(x)=ax-a-x+2①
∴f(-x)+g(-x)=a-x-ax+2
∵f(-x)=-f(x),g(-x)=g(x)
∴-f(x)+g(x)=a-x-ax+2②
聯(lián)立①②可得,f(x)=ax-a-x,g(x)=2
∵g(2012)=a,
∴a=2
則f(-2012)=2-2012-22012
故選B
點(diǎn)評:本題主要考查了奇偶函數(shù)的定義在函數(shù)解析式的求解中的應(yīng)用,解題的關(guān)鍵是由g(x)確定a的值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)(幾何證明選講選做題)如圖,點(diǎn)M為⊙O的弦AB上的一點(diǎn),連接MO.MN⊥OM,MN交圓于N,若MA=2,MB=4,則MN=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊3次,至少1次未擊中目標(biāo)的概率;
(2)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?
(3)設(shè)甲連續(xù)射擊3次,用ξ表示甲擊中目標(biāo)時(shí)射擊的次數(shù),求ξ的數(shù)學(xué)期望Eξ.(結(jié)果可以用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)等差數(shù)列{an}中,已知a3=5,a2+a5=12,an=29,則n為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)等比數(shù)列{an}中,a3=2,a7=8,則a5=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)已知實(shí)數(shù)x,y滿足約束條件
x≥1
y≤1
x-y≤0
’則z=2x-y的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案