設(shè)命題p:函數(shù)y=sin2x的最小正周期為
π
2
;命題q:函數(shù)y=2x-
1
2x
是奇函數(shù).則下列判斷正確的是( 。
A、p為真B、¬q為真
C、p∧q為真D、p∨q為真
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:分別判斷命題p,q的真假性,結(jié)合復(fù)合命題之間的關(guān)系即可得到結(jié)論.
解答: 解:函數(shù)y=sin2x的最小正周期為
2
,故命題p是假命題,
設(shè)y=f(x)=2x-
1
2x
=2x-2-x,則f(-x)=2-x-2x=-(2x-2-x)=-f(x),為奇函數(shù),命題q為真命題,
則p∨q為真,
故選:D
點(diǎn)評(píng):本題主要考查復(fù)合命題與簡(jiǎn)單命題之間的關(guān)系,分別判斷命題p,q的真假是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

變量x,y滿足
x=
t
y=2
1-t
(t為參數(shù)),則代數(shù)式
y+2
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
y2
25
+
x2
16
=1的焦點(diǎn)坐標(biāo)為( 。
A、(0,±3)
B、(±3,0)
C、(0,±5)
D、(±4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(2x-
1
x
6展開(kāi)式中的常數(shù)項(xiàng)為( 。
A、-160B、-180
C、160D、180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
<n(n∈N*,且n>1)時(shí),不等式在n=k+1時(shí)的形式是( 。
A、1+
1
2
+
1
3
+…+
1
2k
<k+1
B、1+
1
2
+
1
3
++
1
2k-1
+
1
2k+1-1
<k+1
C、1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+
1
2k+1-1
<k+1
D、1+
1
2
+
1
3
+…+
1
2k-1
+
1
2k
+…+
1
2k+1-2
+
1
2k+1-1
<k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(3,-1,2),
b
=(x,y,-4),且
a
b
,則x+y=(  )
A、8B、4C、-4D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=sin(2x-
π
6
)的圖象,只需把正弦曲線y=sinx上所有點(diǎn)(  )
A、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的
1
2
倍,縱坐標(biāo)不變
C、向右平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變
D、向左平移
π
6
個(gè)單位長(zhǎng)度,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來(lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}對(duì)任意的n∈N*有an+1=an-
1
n(n+1)
+1成立,若a1=1,則a10等于( 。
A、
91
10
B、
101
10
C、
111
11
D、
122
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到y(tǒng)軸的距離與到點(diǎn)A(2,3)的距離之和的最小值為( 。
A、2
B、3
C、
10
D、
10
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案