A. | $[{-1,-\frac{1}{4}}]$ | B. | $[{-1,\frac{1}{5}}]$ | C. | $({-∞,-1}]∪[{\frac{1}{5},+∞})$ | D. | $[{-\frac{1}{4},\frac{1}{5}}]$ |
分析 做出不等式組對(duì)應(yīng)的可行域,由于直線y=k(x+2)過(guò)點(diǎn)P(-2,0),斜率為k的直線l的斜率,由圖結(jié)合兩點(diǎn)求斜率公式求得PA、PB的斜率得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$作出可行域如圖,
直線y=k(x+2)過(guò)定點(diǎn)P(-2,0),實(shí)數(shù)k的值是直線l的斜率,
A(-1,-1),B($\frac{1}{2},\frac{1}{2}$).
∵kPA=-1,${k}_{PB}=\frac{\frac{1}{2}-0}{\frac{1}{2}-(-2)}=\frac{1}{5}$.
∴實(shí)數(shù)k的取值范圍是[-1,$\frac{1}{5}$].
故選:B.
點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃,利用線性規(guī)劃的知識(shí)用圖象法求出斜率的最大值與最小值,這是一道靈活的線性規(guī)劃問(wèn)題,還考查了數(shù)形結(jié)合的思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{2}{5},\frac{2}{3})$ | B. | $(-\frac{2}{5},\frac{3}{2})$ | C. | $(-\frac{2}{5},\frac{1}{2})$ | D. | $(-∞,-\frac{2}{5})∪(\frac{2}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com