定義在R上的函數(shù)f(x)滿足對(duì)任意x,y∈R有f(x+y)=f(x)+f(y)-1,且當(dāng)x<0時(shí),f(x)<1.
(I)證明f(x)在R上是增函數(shù);
(II)若f(3)=4,求函數(shù)f(x)在[1,3]上的值域.

證明:(I)設(shè)x1、x2∈R,且x1<x2
f (x1)-f (x2)=f[x2+(x1-x2)]-f (x2
=f (x1-x2)+f (x2)-1-f (x2)=f (x1-x2)-1,
∵x1<x2,∴x1-x2<0,
∵當(dāng)x<0時(shí),f(x)<1
∴f (x1)-f (x2)=f (x1-x2)-1<0,
即f (x1)<f (x2),
∴f (x)在R上是增函數(shù);
(II)∵f(3)=f(2+1)=f(2)+f(1)-1=3f(1)-2=4,
∴f(1)=2
∵f (x)在R上是增函數(shù)
∴函數(shù)f(x)在[1,3]上的值域?yàn)閇2,4].
分析:(I)設(shè)x1、x2∈R,且x1<x2,根據(jù)f (x1)-f (x2)=f[x2+(x1-x2)]-f (x2),結(jié)合f(x+y)=f(x)+f(y)-1,且當(dāng)x<0時(shí),f(x)<1,可證f (x1)<f (x2),故可得結(jié)論;
(II)根據(jù)f(3)=4,計(jì)算f(1)=2,利用f (x)在R上是增函數(shù),即可得到函數(shù)f(x)在[1,3]上的值域.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性的判斷與證明,突出考查等價(jià)轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案