分析 (Ⅰ)由數(shù)列遞推式求出首項(xiàng),進(jìn)一步得當(dāng)n≥2時(shí),Sn-1=-1+2an-1,與原遞推式聯(lián)立可得an=2an-1(n≥2),即{an}是2為公比,1為首項(xiàng)的等比數(shù)列,再由等比數(shù)列的通項(xiàng)公式求得{an}的通項(xiàng)公式;
(Ⅱ)把數(shù)列通項(xiàng)公式代入bn=log2an+1,求出數(shù)列{bn}的前n項(xiàng)和為Tn,再由裂項(xiàng)相消法求$\frac{1}{{T}_{1}}+\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$.
解答 解:(Ⅰ)由已知,有Sn=-1+2an,①
當(dāng)n=1時(shí),a1=-1+2a1,即a1=1.
當(dāng)n≥2時(shí),Sn-1=-1+2an-1,②
①-②得an=Sn-Sn-1=2an-2an-1,即an=2an-1(n≥2).
∴{an}是2為公比,1為首項(xiàng)的等比數(shù)列,即${a}_{n}={2}^{n-1}$.
(Ⅱ)由(Ⅰ),得$_{n}=lo{g}_{2}{a}_{n+1}=lo{g}_{2}{2}^{n}=n$,
∴${T}_{n}=1+2+…+n=\frac{n(n+1)}{2}$.
∴$\frac{1}{{T}_{1}}+\frac{1}{{T}_{2}}+…+\frac{1}{{T}_{n}}=\frac{2}{1×2}+\frac{2}{2×3}+\frac{2}{3×4}+…+$$\frac{2}{n(n+1)}$
=$2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1})$=2$(1-\frac{1}{n+1})=\frac{2n}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 215° | B. | 225° | C. | 235° | D. | 245° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {0} | C. | {1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com