如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.

(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大。
(Ⅲ)試在線段AC上確定一點P,使得PF與BC所成的角是60°.
(1)對于線面平行的證明,主要是分析借助于中位線來得到AM∥OE
(2)60º(3)P是AC的中點

試題分析:解法一: (1)記AC與BD的交點為O,連接OE, ∵O、M分別是AC、EF的中點, ACEF是矩形,∴四邊形AOEM是平行四邊形,
∴AM∥OE.∵平面BDE, 平面BDE,∴AM∥平面BDE.……4分
(2)在平面AFD中過A作AS⊥DF于S,連結BS,∵AB⊥AF, AB⊥AD, ∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,
由三垂線定理得BS⊥DF.∴∠BSA是二面角A—DF—B的平面角.
在RtΔASB中,
∴二面角A—DF—B的大小為60º.……8分
(3)設CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD,
∵PQ⊥AB,PQ⊥AF,,∴PQ⊥平面ABF,平面ABF,∴PQ⊥QF.在RtΔPQF中,∠FPQ=60º,PF=2PQ.
∵ΔPAQ為等腰直角三角形,∴又∵ΔPAF為直角三
角形,∴,∴所以t=1或t=3(舍去),即點P是AC的中點.……12分
解法二: (1)建立空間直角坐標系.
,連接NE, 則點N、E的坐標分別是(、(0,0,1),
, 又點A、M的坐標分別是,(
 =(且NE與AM不共線,∴NE∥AM.又∵平面BDE, 平面BDE,∴AM∥平面BDE.
(2)∵AF⊥AB,AB⊥AD,AF∴AB⊥平面ADF.
為平面DAF的法向量.
=(·=0,
=(·=0得
,,∴NE為平面BDF的法向量.
∴cos<=∴AB與NE的夾角是60º.即所求二面角A—DF—B的大小是60º.
(3)設P(t,t,0)(0≤t≤)得=(0,, 0)
又∵PF和BC所成的角是60º.∴
解得(舍去),即點P是AC的中點.
點評:解決的關鍵是根據(jù)線面平行的判定定理,以及空間的法向量來求解二面角的平面角的大小,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,二面角的棱上有CD兩點,線段AC、BD分別在這個二面角的兩個半平面內,且都垂直于CD,已知AC=2,BD=3, AB=6,CD=,則這個二面角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知集合={直線},={平面},.若,給出下列四個命題:
  ② ③ ④ 其中所有正確命題的序號是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是三個不重合的平面,a,b是兩條不重合的直線,有下列三個條件:①如果命題且_______,則為真命題,則可以在橫線處填入的條件是(  )
A.①或②B.②或③C.①或③ D.只有②

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面,的中點.

(Ⅰ)求證://平面;
(Ⅱ)若平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,
,的中點.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,⊥底面,點在棱上.

(1)求證:平面⊥平面;
(2)當的中點時,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點。

(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點N,使AN與MC1成角60°?若存在,確定點N的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

同步練習冊答案