已知函數(shù) 則函數(shù)的零點個數(shù)為 (    )

A.           B.           C.              D.

 

【答案】

C

【解析】

試題分析:;,所以函數(shù)的零點個數(shù)為3個.

考點:零點的求法.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設數(shù)列{an}的前n項和Sn=f(n).
(1)求函數(shù)f(x)的表達式;
(2)求數(shù)列{an}的通項公式;
(3)在各項均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個數(shù)列{cn}一對變號項.令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號項的對數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時,直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當m=1時,設M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當m=1時,|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x
1-a
3
的定義域是非零實數(shù),且在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù),則最小的自然數(shù)a等于( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內的任意實數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實數(shù)a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調遞增函數(shù),當x∈[0,1)時,f(x)=2x,求實數(shù)m的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域為一個閉區(qū)間,求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級類周期函數(shù),若存在,求出實數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:單選題

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f()的值是
[     ]
A.0
B.
C.1
D.

查看答案和解析>>

同步練習冊答案