解:(I)當(dāng)a=l時,f(x)=(ax
2-2x+a)e
-x,其定義域為R
求導(dǎo)函數(shù)可得:f′(x)=-(x-1)(x-3)e
-x,
由f′(x)>0,可得1<x<3;由f′(x)<0,可得x<1或x>3
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,3),單調(diào)遞減區(qū)間為(-∞,1),(3,+∞);
(Ⅱ)∵f′(x)=-[ax
2-2(a+1)x+a]e
-x,∴g(x)=ax
2-2(a+1)x
令F(x)=g(x)-h(x)=(a-
)x
2-2ax+lnx(x>1)
x>l時總有g(shù)(x)<h(x),等價于F(x)<0在(1,+∞)上恒成立
求導(dǎo)函數(shù),可得F′(x)=
①若a>
,令F′(x)=0,得x
1=1,x
2=
當(dāng)x
2>x
1=1,即
時,在(1,x
2)上,F(xiàn)′(x)<0,則函數(shù)單調(diào)遞減,在(x
2,+∞)上,F(xiàn)′(x)>0,則函數(shù)單調(diào)遞增,故函數(shù)的值域為[F(x
2),+∞),不合題意,舍去;
②若a≤
,即2a-1≤0時,在(1,+∞)上,F(xiàn)′(x)<0,則函數(shù)單調(diào)遞減,∴F(x)<F(1)=-a-
≤0,∴-
≤a≤
,
綜上,a的取值范圍為[-
,
].
分析:(I)當(dāng)a=l時,確定函數(shù)的定義域,求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負,可得函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)構(gòu)造F(x)=g(x)-h(x)=(a-
)x
2-2ax+lnx(x>1),x>l時總有g(shù)(x)<h(x),等價于F(x)<0在(1,+∞)上恒成立,分類討論,確定函數(shù)的單調(diào)性,即可求a的取值范圍.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查恒成立問題,考查分類討論的數(shù)學(xué)思想,正確求導(dǎo)是關(guān)鍵.