如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)將(1)中的曲線C推廣為橢圓:,并將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解.

【答案】分析:(1)設出M的坐標,利用題意向量的關系,求得x和y的關系,進而求得M的軌跡C.
(2)將直線l與l'的方程與軌跡C的方程聯(lián)立,分別求弦長,從而表達出四邊形ADBE面積S,再利用基本不等式求最小值;
(3)將直線l與l'的方程與橢圓的方程聯(lián)立,分別求弦長,從而表達出四邊形ADBE面積S,再利用基本不等式求最小值;
解答:解:(1)設M(x,y),P(0,b),Q(a,0)(a≥0),易知,,,由題設,得其中a≥0,從而,,且x≥0,
又由已知,得HP⊥PM,
當b≠0時,y≠0,此時,得,
又kPM=kPQ,故,,
,y2=4x(x≠0),
當b=0時,點P為原點,HP為x軸,PM為y軸,點Q也為原點,從而點M也為原點,因此點M的軌跡C的方程為y2=4x,它表示以原點為頂點,以(1,0)為焦點的拋物線;                                    (4分)
(2)由題設,可設直線l的方程為y=k(x-1)(k≠0),直線l'的方程為,(k≠0),又設A(x1,y1)、B(x2,y2),
則由,消去x,整理得ky2-4y-4k=0,
,同理|DE|=4(1+k2),(7分)
,
當且僅當k=±1時等號成立,因此四邊形ADBE面積S的最小值為32.
(9分)
(3)當k≠0時可設直線l的方程為y=k(x-1),
,得(1+2k2)x2-4k2x+2k2-2=0,
,,(13分),
當且僅當k2=1時等號成立.(17分)
當k=0時,易知,,得,
故當且僅當k2=1時四邊形ADBE面積S有最小值.(18分)
點評:本題的考點是直線與圓錐曲線的綜合運用,主要考查了橢圓的應用,向量的基本性質.考查了學生分析問題和解決問題的能力,考查利用基本不等式求最值問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,求圓C的極坐標方程;
(2)過原點O作直線l的垂線,垂足為H,若動點M0滿足2
OM
=3
OH
,當φ變化時,求點M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市盧灣區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足,
(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

同步練習冊答案