【題目】已知函數(shù),如果存在給定的實(shí)數(shù)對,使得恒成立,則稱為“函數(shù)”;
(1)判斷函數(shù),是否是“函數(shù)”;
(2)若是一個“函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對;
(3)若定義域?yàn)?/span>的函數(shù)是“函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對和,當(dāng)時,的值域?yàn)?/span>,求當(dāng)時的值域;
【答案】(1) 不是“函數(shù)”, ,是“函數(shù)” ;(2) ;(3)
【解析】
(1)分別假設(shè)兩函數(shù)是“函數(shù)”,列出方程恒成立. 通過判斷方程的解的個數(shù)判斷出不是,對于對于列出方程恒成立,是“函數(shù)”.
(2)據(jù)題中的定義,列出方程恒成立,通過兩角和差的正切公式展開整理,令含未知數(shù)的系數(shù)為0,求出.
(3)利用題中的新定義,列出兩個等式恒成立;將用代替,兩等式結(jié)合得到函數(shù)值的遞推關(guān)系;用不完全歸納的方法求出值域.
(1)若是“函數(shù)”,則存在常數(shù)對,使得.
即,對恒成立,而最多有兩個解,
所以不是“函數(shù)”.
若是函數(shù),則存在常數(shù)對,使得,
即存在常數(shù)對滿足條件.
所以是“函數(shù)”.
(2) 是“函數(shù)”,設(shè)常數(shù)對滿足,
恒成立.
當(dāng)時,不是常數(shù).
所以,.
.
所以恒成立.
即 ,即,所以,.
又當(dāng)以,.
所以當(dāng)是一個“函數(shù)”時,.
(3) 函數(shù)是“函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對和.
所以, ,
由得.
因?yàn)?/span>時,的值域?yàn)?/span>.
當(dāng)時,,由
所以時,的值域?yàn)?/span>.
又 有,即.
所以是以2為周期的函數(shù).
當(dāng)時的值域?yàn)椋?/span>.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.
(1)試判斷函數(shù)與是否是“L函數(shù)”;
(2)若函數(shù)為“L函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)為“L函數(shù)”,且,求證:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),x∈R是奇函數(shù),其部分圖象如圖所示,則在(﹣1,0)上與函數(shù)f(x)的單調(diào)性相同的是( 。
A.B.y=log2|x|
C.D.y=cos(2x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紀(jì)念幣是一個國家為紀(jì)念國際或本國的政治、歷史,文化等方面的重大事件、杰出人物、名勝古跡、珍稀動植物、體育賽事等而發(fā)行的法定貨幣.我國在1984年首次發(fā)行紀(jì)念幣,目前已發(fā)行了115套紀(jì)念幣,這些紀(jì)念幣深受郵幣愛好者的喜愛與收藏.2019年發(fā)行的第115套紀(jì)念幣“雙遺產(chǎn)之泰山幣”是目前為止發(fā)行的第一套異形幣,因?yàn)檫@套紀(jì)念幣的多種特質(zhì),更加受到愛好者追捧.某機(jī)構(gòu)為調(diào)查我國公民對紀(jì)念幣的喜愛態(tài)度,隨機(jī)選了某城市某小區(qū)的50位居民調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
喜愛 | 不喜愛 | 合計(jì) | |
年齡不大于40歲 | 24 | ||
年齡大于40歲 | 20 | ||
合計(jì) | 22 | 50 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整,判斷能否在犯錯誤的概率不超過的前提下認(rèn)為不同年齡與紀(jì)念幣的喜愛無關(guān)?
(2)已知在被調(diào)查的年齡不大于40歲的喜愛者中有5名男性,其中3位是學(xué)生,現(xiàn)從這5名男性中隨機(jī)抽取2人,求至多有1位學(xué)生的概率.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評價空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對應(yīng)如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( 。
A. 整體上看,這個月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半個月的空氣質(zhì)量
C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門理科學(xué)科(物理、化學(xué)、生物)和3門文科學(xué)科(歷史、政治、地理)的6門學(xué)科中選擇3門學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學(xué)科是相互獨(dú)立的.
(1)求1位考生至少選擇生物、物理兩門學(xué)科中的1門的概率;
(2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時選擇生物、物理兩門學(xué)科的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在時,有極值,求的值;
(2)在直線上是否存在點(diǎn),使得過點(diǎn)至少有兩條直線與曲線相切?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,動點(diǎn)E到定點(diǎn)和定直線的距離相等.
(1)求動點(diǎn)E的軌跡C的方程;
(2)設(shè)動直線與曲線C有唯一的公共點(diǎn)P,與直線相交于點(diǎn)Q,若,求證:點(diǎn)M的軌跡恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“型點(diǎn)”.
(1)若,時,判斷的左焦點(diǎn)是否為“型點(diǎn)”,并說明理由;
(2)設(shè)直線與有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“型點(diǎn)”;
(3)若圓內(nèi)的任意一點(diǎn)都不是“型點(diǎn)”,試寫出a、b滿足的關(guān)系式,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com