某商店經(jīng)銷一種奧運會紀念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務部門上交a元(a為常數(shù),2≤a≤5 )的稅收.設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例.已知每件產(chǎn)品的日售價為40元時,日銷售量為10件.
(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;
(2)當每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值.
分析:(1)日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例,則有售量為
k
ex
,再結(jié)合利潤=收入-支出問題可以得到解決.
(2)求解函數(shù)的最值,導數(shù)是十分重要的工具,利用分段函數(shù)的性質(zhì)進行求解.
解答:解:(1)設(shè)日銷售量為
k
ex
,則
k
e40
=10
,
k=10e40,則日售量為
10e40
ex
.(2分)
則日利潤L(x)=(x-30-a)
10e40
ex
=10e40
x-30-a
ex
;(4分)
(2)L(x)=10e40
31+a-x
ex
(7分)
①當2≤a≤4時,33≤a+31≤35,當35<x<41時,L′(x)<0
∴當x=35時,L(x)取最大值為10(5-a)e5(10分)
②當4<a≤5時,35≤a+31≤36,令L′(x)=0,得x=a+31,
易知當x=a+31時,L(x)取最大值為10e9-a(13分)
綜合上得L(x)max=
10(5-a)e5,(2≤a≤4)
10e9-a,(4<a≤5)
.(15分)
點評:本題考查函數(shù)的性質(zhì)和應用,解題時要注意公式的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(09年丹陽高級中學一摸)(15分)某商店經(jīng)銷一種奧運會紀念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務部門上交元(為常數(shù),2≤a≤5 )的稅收。設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與(e為自然對數(shù)的底數(shù))成反比例。已知每件產(chǎn)品的日售價為40元時,日銷售量為10件。

(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;

(2)當每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省徐州市高三期中模擬數(shù)學試卷(解析版) 題型:解答題

某商店經(jīng)銷一種奧運會紀念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務部門上交元(為常數(shù),2≤a≤5 )的稅收。設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與(e為自然對數(shù)的底數(shù))成反比例。已知每件產(chǎn)品的日售價為40元時,日銷售量為10件。

(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;

(2)當每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省高三年級暑期檢測數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

某商店經(jīng)銷一種奧運會紀念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務部門上交元(為常數(shù),2≤a≤5 )的稅收.設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與(e為自然對數(shù)的底數(shù))成反比例.已知每件產(chǎn)品的日售價為40元時,日銷售量為10件.

 (1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;

 (2)當每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡市黃州一中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:解答題

某商店經(jīng)銷一種奧運會紀念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務部門上交a元(a為常數(shù),2≤a≤5 )的稅收.設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例.已知每件產(chǎn)品的日售價為40.
元時,日銷售量為10件.
(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;
(2)當每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

同步練習冊答案