已知函數(shù).
(1)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍;
(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)當,時,求證:.
(1)
(2)
(3)根據(jù)數(shù)列的求和來放縮法得到不等式的證明關鍵是對于的運用。
【解析】
試題分析:解:(1),
當時,;當時,;
函數(shù)在區(qū)間(0,1)上為增函數(shù);在區(qū)間為減函數(shù) 3分
當時,函數(shù)取得極大值,而函數(shù)在區(qū)間有極值.
,解得. 5分
(2)由(1)得的極大值為,令,所以當時,函數(shù)取得最小值,又因為方程有實數(shù)解,那么,即,所以實數(shù)的取值范圍是:. 10分
(另解:,,
令,所以,當時,
當時,;當時,
當時,函數(shù)取得極大值為
當方程有實數(shù)解時,.)
(3)函數(shù)在區(qū)間為減函數(shù),而,
,即
12分
即,
而,結論成立. 16分
考點:導數(shù)的運用
點評:根據(jù)導數(shù)的符號判定函數(shù)的單調性,是解決該試題的關鍵,同時能結合函數(shù)與方程的思想求解方程的根,屬于中檔題。
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆寧夏高二上學期期末考試文科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調區(qū)間;
(2)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖南省岳陽市高三第一次質量檢測理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖北省華中師大一附中高三上學期期中檢測文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學 來源:吉林省10-11學年高二下學期期末考試數(shù)學(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com