(本題滿(mǎn)分13分)
一個(gè)多面體的直觀(guān)圖和三視圖如下: (其中分別是中點(diǎn))
(1)求證:平面;
(2)求多面體的體積.
(1)略
(2)
解析解:
(1)由三視圖知,該多面體是底面為直角三角形的直三棱柱,且,
,∴. ---2分
取中點(diǎn),連,由分別是中點(diǎn),可設(shè):,
∴面面∴面… ---8分
(2)作于,由于三棱柱為直三棱柱
∴面,
且∴,---13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,在梯形中,∥,,,平面平面,四邊形是矩形,,點(diǎn)在線(xiàn)段上.
(1)求證:平面BCF⊥平面ACFE;
(2)當(dāng)為何值時(shí),∥平面?證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在半徑為13的球面上有A,B,C三點(diǎn),AB=6,BC=8,CA=10,求過(guò)A,B,C三點(diǎn)的截面與球心的距離。(10分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知兩條不同直線(xiàn)、,兩個(gè)不同平面、,給出下列命題:
①若∥,則平行于內(nèi)的所有直線(xiàn);
②若,且⊥,則⊥;
③若,,則⊥;
④若,且∥,則∥;
其中正確命題的個(gè)數(shù)為( )
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,E丄平面ABCD,G為EF中點(diǎn).
(1)求證:CF//平面
(2) 求證:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)
一個(gè)用鮮花做成的花柱,它的下面是一個(gè)直徑為2m、高為4m的圓柱形物體,上面是一個(gè)直徑為2m的半球形體,如果每平方米大約需要鮮花200朵,那么裝飾這個(gè)花柱大約需要多少朵鮮花(取3.1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
一個(gè)四棱錐的三視圖如圖所示:
(1)根據(jù)圖中標(biāo)出的尺寸畫(huà)出直觀(guān)圖(不要求寫(xiě)畫(huà)法步驟);
(2)求三棱錐A-PDC的體積;高考資源網(wǎng)
(3)試在PB上求點(diǎn)M,使得CM∥平面PDA并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分10分)
如圖所示,是一個(gè)獎(jiǎng)杯的三視圖(單位:cm),,計(jì)算這個(gè)獎(jiǎng)杯的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(9分)已知,為上的點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),求證;
(2)當(dāng)二面角——的大小為的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com