設(shè)首項(xiàng)為a,公差為d的等差數(shù)列前n項(xiàng)的和為An,又首項(xiàng)為a,公比為r的等比數(shù)列前n項(xiàng)和為Gn,其中a≠0,|r|<1.令Sn=G1+G2+…+Gn,若有=a,求r的值.
【答案】分析:等比和等差數(shù)列的求和公式分別表示出An和Gn,進(jìn)而表示出,最后求出其極限即可.
解答:解:由題意知Gn=
∴Sn=
=
=[rn-r-n(-1+r)]
An=na+
=[na+]-[rn-r-n(-1+r)]=a+-×(rn-r)-
=a,a≠0,|r|<1
所以:+=0且×r+a-=a,即×r-=0
×r+=0,整理得2r-1=0,解得r=
點(diǎn)評(píng):本題主要考查了等比數(shù)列的求和問(wèn)題.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)首項(xiàng)為a,公差為d的等差數(shù)列前n項(xiàng)的和為An,又首項(xiàng)為a,公比為r的等比數(shù)列前n項(xiàng)和為Gn,其中a≠0,|r|<1.令Sn=G1+G2+…+Gn,若有
lim
n→∞
(
An
n
-Sn)
=a,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)首項(xiàng)為a,公差為d的等差數(shù)列的前n項(xiàng)的和為An,又首項(xiàng)為a,公比為r的等比數(shù)列的前n項(xiàng)和為Sn,其中|r|<1,若有,求r的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)首項(xiàng)為a,公差為d的等差數(shù)列前n項(xiàng)的和為An,又首項(xiàng)為a,公比為r的等比數(shù)列前n項(xiàng)和為Gn,其中a≠0,|r|<1.令Sn=G1+G2+…+Gn,若有
lim
n→∞
(
An
n
-Sn)
=a,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶十一中高一(上)數(shù)學(xué)單元測(cè)試10(集合到等比數(shù)列)(解析版) 題型:選擇題

設(shè)等差數(shù)列的首項(xiàng)為a,公差為d,則它含負(fù)數(shù)項(xiàng)且只有有限個(gè)負(fù)數(shù)項(xiàng)的條件是( )
A.a(chǎn)>0,d>0
B.a(chǎn)>0,d<0
C.a(chǎn)<0,d>0
D.a(chǎn)<0,d<0

查看答案和解析>>

同步練習(xí)冊(cè)答案