正方體ABCD-A1B1C1D1中,AB1與C1D1所成的角( 。
A、30°B、45°
C、60°D、90°
考點:異面直線及其所成的角
專題:空間角
分析:由D1C1∥AB,知∠BAB1是AB1與C1D1所成的角,由此能求出AB1與C1D1所成的角.
解答: 解:∵D1C1∥AB,
∴∠BAB1是AB1與C1D1所成的角,
∵AB=BB1,AB⊥BB1
∴∠BAB1=45°.
∴AB1與C1D1所成的角為45°.
故選:B.
點評:本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x-
π
4
)=-
5
13
,則sin2x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知R為實數(shù)集,M={x|x2-2x<0},N={x|y=
x-1
},則M∪(∁RN)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是空間四邊形,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點
(1)求證:EFGH是平行四邊形
(2)若BD=2
3
,求異面直線AC、BD所成的角和EG、BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+a(a∈R),
(1)當(dāng)a=
1
3
時,求不等式f(x)<
5
3
x2-
11
3
的解集;
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)僅有一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x與點M(-1,1),過C的焦點的直線與C交于A,B兩點,若
MA
MB
=0,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且2Sn=an2+an,n∈N.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
an2
,求證:對一切正整數(shù)n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n是大于1的自然數(shù),求證:logn(n+1)>logn+1(n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=-
1
an
十1,求a2013+a2014十a(chǎn)2015=
 

查看答案和解析>>

同步練習(xí)冊答案