某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時(shí)刻x(時(shí)) 的關(guān)系為f(x)=|-a|+2a+,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,].
(1)令t=,x∈[0,24],寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a),求M(a);
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)M(a)是否超標(biāo)?
【答案】分析:(1)單調(diào)遞增區(qū)間為[0,1];單調(diào)遞減區(qū)間為[1,24],利用單調(diào)性的定義可以證明;
(2)先確定t的取值范圍是[0,],再進(jìn)行分類(lèi)討論,從而可得M(a)的解析式;
(3)利用分段函數(shù),可得當(dāng)時(shí)不超標(biāo),從而可得結(jié)論.
解答:解:(1)單調(diào)遞增區(qū)間為[0,1];單調(diào)遞減區(qū)間為[1,24].
證明:任取0≤x1<x2≤1,t(x1)-t(x2)=,
∵0≤x1<x2≤1,∴x1-x2<0,1-x1x2>0,∴<0,∴t(x1)-t(x2)<0.
所以函數(shù)t(x)在[0,1]上為增函數(shù).(同理可證在區(qū)間[1,24]單調(diào)遞減)
(2)由函數(shù)的單調(diào)性知tmax(x)=t(1)=1,tmin(x)=t(0)=0,
∴t==,∴t的取值范圍是[0,].
當(dāng)a∈[0,]時(shí),由于f(x)=|-a|+2a+,則可記g(t)=|t-a|+2a+
則g(t)=
∵g(t)在[0,a]上單調(diào)遞減,在(a,]上單調(diào)遞增,
且g(0)=3a+.g()=a+
∴g(0)-g()=2(a-).
故M(a)=
(3)當(dāng)時(shí),,∴,不滿(mǎn)足題意;
當(dāng)時(shí),,∴a≤,∴時(shí),滿(mǎn)足題意
故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).
點(diǎn)評(píng):本題主要考查了函數(shù)模型的選擇與應(yīng)用、考查求函數(shù)解析式及分類(lèi)討論的思想,屬于實(shí)際應(yīng)用題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時(shí)刻x(時(shí)) 的關(guān)系為f(x)=|
x
x2+1
-a|+2a+
2
3
,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,
1
2
].
(1)令t=
x
x2+1
,x∈[0,24],寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a),求M(a);
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)M(a)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時(shí)刻x(時(shí))的關(guān)系為f(x)=|
x
x2+1
-a|
+2a+
2
3
,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,
1
2
].
(1)令t=
x
x2+1
,x∈[0,24],直接寫(xiě)出t的取值范圍;(可以不要寫(xiě)演算寫(xiě)過(guò)程)
(2)若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a),求M(a);
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不超過(guò)2稱(chēng)為“環(huán)保達(dá)標(biāo)”,試問(wèn)a應(yīng)控制在什么范圍內(nèi)才能“環(huán)保達(dá)標(biāo)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市崇明縣高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時(shí)刻x(時(shí)) 的關(guān)系為f(x)=|-a|+2a+,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,].
(1)令t=,x∈[0,24],寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a),求M(a);
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)M(a)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市崇明縣高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時(shí)刻x(時(shí)) 的關(guān)系為f(x)=|-a|+2a+,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,].
(1)令t=,x∈[0,24],寫(xiě)出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a),求M(a);
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)M(a)是否超標(biāo)?

查看答案和解析>>

同步練習(xí)冊(cè)答案