13.以下命題中錯(cuò)誤的是( 。
A.若直線與平面沒(méi)有公共點(diǎn),則它們平行
B.如果兩直線沒(méi)有公共點(diǎn),那么這兩直線平行
C.若兩平面沒(méi)有公共點(diǎn),則它們平行
D.若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直

分析 根據(jù)空間線面之間關(guān)系的定義,逐一對(duì)四個(gè)答案進(jìn)行分析即可得到結(jié)論.

解答 解:由線面平行的定義,可得A正確;
如果兩直線沒(méi)有公共點(diǎn),那么這兩直線平行或異面,故B錯(cuò)誤;
由面面平行的定義,可得C正確;
由面面垂直的定義,可得D正確;
故選B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系,熟練掌握空間中線面關(guān)系的定義是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆河南新鄉(xiāng)一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

中央電視臺(tái)電視公開課《開講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如下表所示:

大學(xué)

人數(shù)

8

12

8

12

從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.

(1)求各大學(xué)抽取的人數(shù);

(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來(lái)自同一所大學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.無(wú)窮等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=6,S6=3,則$\underset{lim}{n→∞}{S}_{n}$=$\frac{8+4\root{3}{4}}{2+\root{3}{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.命題“若x>3,則x>0”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。
A..1B.2C.3D..4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2a10=9,則a5+a7(  )
A.有最小值6B.有最大值6C.有最大值9D.有最小值3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB=AP,PA⊥底面ABCD,E是PC的中點(diǎn).
(1)求證:BE∥平面PAD; 
(2)求異面直線PD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若直線$\sqrt{3}$x-y-1=0與x-ay=0的夾角是$\frac{π}{6}$,則實(shí)數(shù)a的值為$\sqrt{3}$或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)設(shè)復(fù)數(shù)z滿足(1+i)z=2,其中i為虛數(shù)單位,求復(fù)數(shù)z.
(2)若復(fù)數(shù)z=m2+m-2+(m-3)i(m∈R)的共軛復(fù)數(shù)$\overline{z}$對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知全集I=R,集合A={x|x2+2x-3>0},$B=\left\{{x|\frac{x+5}{x-1}<0}\right\}$,求
(1)A∩B;
(2)A∪(∁IB)

查看答案和解析>>

同步練習(xí)冊(cè)答案