過拋物線y2=2px(p>0)的對稱軸上的定點M(m,0)(m>0),作直線AB與拋物線相交于A,B兩點.

(1)試證明:A,B兩點的縱坐標(biāo)之積為定值;

(2)若點N是定直線l:x=-m上的任一點,試探索三條直線AN,MN,BN的斜率之間的關(guān)系,并給出證明.

探究:本題第一問,涉及直線與拋物線的交點問題,求證的是這兩個交點的縱坐標(biāo)間的關(guān)系,不難想到聯(lián)立直線與拋物線方程消去x,從而達(dá)到目的;對于第二問,容易想到將這三條直線的斜率,從而得到結(jié)論.

答案:
解析:

  (1)證明:設(shè)A(x1,y1),B(x2,y2)有y1·y2=-2pm,下證之:

  設(shè)直線AB的方程為:x=ty+m與y2=2px聯(lián)立得y2=2pxx=ty+m,消去x得,由根與系數(shù)間的關(guān)系,得y1·y2=-2pm;

  (2)解:三條直線AN,MN,BN的斜率成等差數(shù)列,下證之:

  設(shè)點N(-m,n),則直線-AN的斜率為kAN;直線BN的斜率為kBN,

  ∴kAN+kBN

  =2p·

 。2p·

 。2p·=2p·

  又∵直線MN的斜率為

  kMN,∴kAN+kBN=2kMN,即直線AN,MN,BN的斜率成等差數(shù)列.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1   

 

(Ⅰ)求證:FM1⊥FN1:

(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為S1、、S2、,S3,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。w.w.w.k.s.5.u.c.o.m    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1  

(Ⅰ)求證:FM1⊥FN1:

(Ⅱ)記△FMM1、△FM1N1、△FN N1的面積分別為S1、、S2、,S3,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準(zhǔn)線的交點為B,點A在拋物線準(zhǔn)線上的射影為C,若,則拋物線的方程為(  )

A.y2=4x                             B.y2=8x

C.y2=16x                            D.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第四次周考文科數(shù)學(xué)試卷 題型:選擇題

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為

    A.y2=9x        B.y2=6x

    C.y2=3x    D.y2=x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市七校聯(lián)考高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:選擇題

如圖,過拋物線y2=2pxp>0)的焦點F的直線交拋物線

于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,

則此拋物線的方程為                        (     )

    A.y2=3x  B.y2=6x   C.y2=9x     D.y2

 

查看答案和解析>>

同步練習(xí)冊答案