過拋物線y2=2px(p>0)的對稱軸上的定點M(m,0)(m>0),作直線AB與拋物線相交于A,B兩點.
(1)試證明:A,B兩點的縱坐標(biāo)之積為定值;
(2)若點N是定直線l:x=-m上的任一點,試探索三條直線AN,MN,BN的斜率之間的關(guān)系,并給出證明.
探究:本題第一問,涉及直線與拋物線的交點問題,求證的是這兩個交點的縱坐標(biāo)間的關(guān)系,不難想到聯(lián)立直線與拋物線方程消去x,從而達(dá)到目的;對于第二問,容易想到將這三條直線的斜率,從而得到結(jié)論.
(1)證明:設(shè)A(x1,y1),B(x2,y2)有y1·y2=-2pm,下證之: 設(shè)直線AB的方程為:x=ty+m與y2=2px聯(lián)立得y2=2pxx=ty+m,消去x得,由根與系數(shù)間的關(guān)系,得y1·y2=-2pm; (2)解:三條直線AN,MN,BN的斜率成等差數(shù)列,下證之: 設(shè)點N(-m,n),則直線-AN的斜率為kAN=;直線BN的斜率為kBN=, ∴kAN+kBN= =2p· 。2p· 。2p·=2p·, 又∵直線MN的斜率為 kMN=,∴kAN+kBN=2kMN,即直線AN,MN,BN的斜率成等差數(shù)列. |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1
(Ⅰ)求證:FM1⊥FN1:
(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為S1、、S2、,S3,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1
(Ⅰ)求證:FM1⊥FN1:
(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為S1、、S2、,S3,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準(zhǔn)線的交點為B,點A在拋物線準(zhǔn)線上的射影為C,若,則拋物線的方程為( )
A.y2=4x B.y2=8x
C.y2=16x D.y2=4x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第四次周考文科數(shù)學(xué)試卷 題型:選擇題
如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為
A.y2=9x B.y2=6x
C.y2=3x D.y2=x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市七校聯(lián)考高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:選擇題
如圖,過拋物線y2=2px(p>0)的焦點F的直線交拋物線
于點A、B,交其準(zhǔn)線于點C,若|BC|=2|BF|,且|AF|=3,
則此拋物線的方程為 ( )
A.y2=3x B.y2=6x C.y2=9x D.y2=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com