【題目】給出以下命題,其中真命題的個數(shù)是( )
①若“或”是假命題,則“且”是真命題;
②命題“若,則或”為真命題;
③若,則!
④直線與雙曲線交于,兩點,若,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)復合命題真假判斷,即可得出①是正確的;由四種命題關系即可判斷②;根據(jù)乘積求導法則,即可求得;討論直線與雙曲線交點的不同情況,得到直線的數(shù)量。
①命題“或”是假命題,所以為真命題,是假命題。則“且”是真命題,所以①正確。
②命題“若,則或”的逆否命題為 “若且,則”,逆否命題為真命題,所以原命題也為真命題,所以②正確。
③
則
所以,所以③正確。
④直線經(jīng)過雙曲線的右焦點。當直線與雙曲線兩支各交于一點時,若k=0,此時,所以當斜率發(fā)生變化時,過右焦點會有兩條直線(這兩條直線關于x軸對稱)滿足。
當直線交雙曲線右支于兩個點時,若直線與x軸垂直,此時兩交點的距離為5,而此時斜率不存在,所以滿足條件的直線有2條。因而④是錯誤的。
所以有3個是正確的,選C。
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c(a<b<c).已知向量 =(a,c), =(cosC,cosA)滿足 = (a+c).
(1)求證:a+c=2b;
(2)若2csinA﹣ a=0,且c﹣a=8,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】8人圍圓桌開會,其中正、副組長各1人,記錄員1人.
(1)若正、副組長相鄰而坐,有多少種坐法?
(2)若記錄員坐于正、副組長之間,有多少種坐法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點, 分別為, 的中點,且, .
(1)證明: 平面;
(2)設直線與平面所成角為,當在內(nèi)變化時,求二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,四點、、、中恰有三點在橢圓上。
(1)求的方程:
(2)橢圓上是否存在不同的兩點、關于直線對稱?若存在,請求出直線的方程,若不存在,請說明理由;
(3)設直線不經(jīng)過點且與相交于、兩點,若直線與直線的斜率的和為1,求證:過定點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)
已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)試求出S1,S2,S3,S4,并猜想Sn的表達式;
(2)用數(shù)學納法證明你的猜想,并求出an的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com