已知點(diǎn)P在圓x2+y2=5上,點(diǎn)Q(0,-1),則線段PQ的中點(diǎn)的軌跡方程是( )
A.x2+y2-x=0
B.x2+y2-y-1=0
C.x2+y2-y-2=0
D.x2+y2-x+y=0
【答案】分析:設(shè)出P與線段PQ中點(diǎn)M的坐標(biāo),由Q的坐標(biāo),利用中點(diǎn)坐標(biāo)公式表示出m與n,變形后表示出a與b,代入圓的方程中即可得到線段PQ中點(diǎn)軌跡方程.
解答:解:設(shè)P(a,b),線段PQ中點(diǎn)M坐標(biāo)為(x,y),
由Q坐標(biāo)為(0,-1),得到線段PQ中點(diǎn)坐標(biāo)為(,),
∴x=,y=,即a=2x,b=2y-1,
代入圓方程得:4x2+(2y-1)2=5,即x2+y2-y-1=0,
則線段PQ中點(diǎn)的軌跡方程為x2+y2-y-1=0.
故選B
點(diǎn)評(píng):此題考查了圓的標(biāo)準(zhǔn)方程,以及動(dòng)點(diǎn)的軌跡方程,弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知點(diǎn)P在圓x2+y2=5上,點(diǎn)Q(0,-1),則線段PQ的中點(diǎn)的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在圓x2+y2-4x-4y+7=0上,點(diǎn)Q在直線上y=kx上,若|PQ|的最小值為2
2
-1
,則k=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濰坊二模 題型:單選題

已知點(diǎn)P在圓x2+y2=5上,點(diǎn)Q(0,-1),則線段PQ的中點(diǎn)的軌跡方程是( 。
A.x2+y2-x=0B.x2+y2-y-1=0
C.x2+y2-y-2=0D.x2+y2-x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年寧夏銀川市賀蘭一中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知點(diǎn)P在圓x2+y2-4x-4y+7=0上,點(diǎn)Q在直線上y=kx上,若|PQ|的最小值為,則k=( )
A.1
B.-1
C.0
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案