【題目】2017年12月4日0時(shí)起鄭州市實(shí)施機(jī)動(dòng)車(chē)單雙號(hào)限行,新能源汽車(chē)不在限行范圍內(nèi),某人為了出行方便,準(zhǔn)備購(gòu)買(mǎi)某能源汽車(chē).假設(shè)購(gòu)車(chē)費(fèi)用為14.4萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、充電費(fèi)等其他費(fèi)用共0.9萬(wàn)元,汽車(chē)的保養(yǎng)維修費(fèi)為:第一年0.2萬(wàn)元,第二年0.4萬(wàn)元,第三年0.6萬(wàn)元,…,依等差數(shù)列逐年遞增.
(1)設(shè)使用年該車(chē)的總費(fèi)用(包括購(gòu)車(chē)費(fèi)用)為,試寫(xiě)出的表達(dá)式;
(2)問(wèn)這種新能源汽車(chē)使用多少年報(bào)廢最合算(即該車(chē)使用多少年平均費(fèi)用最少),年平均費(fèi)用的最小值是多少?
【答案】(1) (2) 這種新能源汽車(chē)使用12年報(bào)廢最合算,年平均費(fèi)用的最小值是3.4萬(wàn)元.
【解析】試題分析:(I)由已知中某種汽車(chē)購(gòu)買(mǎi)時(shí)費(fèi)用為14.4萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9萬(wàn)元,汽車(chē)的維修費(fèi)為:第一年0.2萬(wàn)元,第二年0.4萬(wàn)元,第三年0.6萬(wàn)元,…,依等差數(shù)列逐年遞增,根據(jù)等差數(shù)列前n項(xiàng)和公式,即可得到f(n)的表達(dá)式;
(II)由(I)中使用n年該車(chē)的總費(fèi)用,我們可以得到n年平均費(fèi)用表達(dá)式,根據(jù)基本不等式,我們易計(jì)算出平均費(fèi)用最小時(shí)的n值,進(jìn)而得到結(jié)論.
試題解析:
解:(1)由題意得
,
(2)設(shè)該車(chē)的年平均費(fèi)用為萬(wàn)元,則有
,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,即取最小值3.4萬(wàn)元.
答:這種新能源汽車(chē)使用12年報(bào)廢最合算,年平均費(fèi)用的最小值是3.4萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓C: + =1(a>b>0)的離心率是 ,且過(guò)點(diǎn)( , ).設(shè)點(diǎn)A1 , B1分別是橢圓的右頂點(diǎn)和上頂點(diǎn),如圖所示過(guò) 點(diǎn)A1 , B1引橢圓C的兩條弦A1E、B1F.
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0②設(shè)直線EF的方程為y=k0x+b(﹣1≤b≤1)設(shè)△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是R上的偶函數(shù),在(﹣3,﹣2)上為減函數(shù)且對(duì)x∈R都有f(2﹣x)=f(x),若A,B是鈍角三角形ABC的兩個(gè)銳角,則( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)
D.f(sinA)與與f(cosB)的大小關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體經(jīng)營(yíng)者把開(kāi)始六個(gè)月試銷(xiāo)A、B兩種商品的逐月投資與所獲純利潤(rùn)列成下表:
投資A商品金額(萬(wàn)元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(rùn)(萬(wàn)元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投資B商品金額(萬(wàn)元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(rùn)(萬(wàn)元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
該經(jīng)營(yíng)者準(zhǔn)備下月投入12萬(wàn)元經(jīng)營(yíng)這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算.請(qǐng)你幫助制定一下資金投入方案,使得該經(jīng)營(yíng)者能獲得最大利潤(rùn),并按你的方案求出該經(jīng)營(yíng)者下月可獲得的最大利潤(rùn)(結(jié)果保留兩個(gè)有效數(shù)字).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是圓:上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡交于兩點(diǎn),在軸上是否存在定點(diǎn)使以為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線l過(guò)原點(diǎn),且它的傾斜角α= ,求l與圓E的交點(diǎn)A的極坐標(biāo)(點(diǎn)A不是坐標(biāo)原點(diǎn));
(2)直線m過(guò)線段OA中點(diǎn)M,且直線m交圓E于B、C兩點(diǎn),求||MB|﹣|MC||的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污 水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為f(m)=25m0.7(萬(wàn)元),m表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi)) (萬(wàn)元),x表示輸送污水管道的長(zhǎng)度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長(zhǎng)為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請(qǐng)解答下列問(wèn)題(結(jié)果精確到0.1)
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費(fèi)用y與x的函數(shù)關(guān)系 式,并求y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com