12.在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,c=4且$\sqrt{3}a=2csinA$,則△ABC面積的最大值為4$\sqrt{3}$.

分析 由正弦定理可知:a=2RsinA,c=2RsinC,代入$\sqrt{3}a=2csinA$,求得sinC=$\frac{\sqrt{3}}{2}$,則C=$\frac{π}{3}$,由余弦定理可知:16=a2+b2-ab≥2ab-ab=ab,求得ab≤16,根據(jù)三角形的面積公式S=$\frac{1}{2}$absinC≤$\frac{1}{2}$•16×$\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,即可求得△ABC面積的最大值.

解答 解:由正弦定理可知:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,
則a=2RsinA,c=2RsinC,
由$\sqrt{3}a=2csinA$,則$\sqrt{3}$RsinA=4RsinCsinA,
由sinA≠0,則sinC=$\frac{\sqrt{3}}{2}$,
∵△ABC為銳角三角形,
∴C=$\frac{π}{3}$,
由余弦定理可知:c2=a2+b2-2abcosC得,16=a2+b2-ab≥2ab-ab=ab,
∴ab≤16,
∴△ABC面積S=$\frac{1}{2}$absinC≤$\frac{1}{2}$•16×$\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
△ABC面積的最大值4$\sqrt{3}$,
故答案為:4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查正弦定理與余弦定理的綜合應(yīng)用,考查基本不等式與三角形面積公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a=log32,b=log45,c=log30.3,則a,b,c的大小關(guān)系是c<a<b(用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.二次函數(shù)f(x)的圖象與x軸交于(-2,0),(4,0)兩點(diǎn),且頂點(diǎn)為(1,-$\frac{9}{2}$).
(1)求f(x)的函數(shù)解析式;
(2)指出圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)分析函數(shù)的單調(diào)性,求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式kx2+2kx-3<0對(duì)一切實(shí)數(shù)x成立,則k的取值范圍是(-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1-2i}{z}=i$,則z的共軛復(fù)數(shù)的虛部為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若方程x2-2x+m=0與-2x2+4x+n=0的4個(gè)不同的根可以組成一個(gè)等差數(shù)列,且首項(xiàng)為$\frac{1}{4}$,則mn的值為-$\frac{105}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$f(x)=\left\{\begin{array}{l}1-{x^2},\;x≤1\\ mlnx,\;x>1\end{array}\right.$,若函數(shù)y=f(x)-x恰有三個(gè)零點(diǎn),則f(m)=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且$f({e^x})=3x+\frac{1}{2}{e^x}+1$,且f′(1)=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=lg(4x-x2)的單調(diào)遞減區(qū)間為[2,4).

查看答案和解析>>

同步練習(xí)冊(cè)答案