已知圓O:x2+y2=r2(r>0)與直線x-y+2
2
=0相切.
(1)求圓O的方程;
(2)過(guò)點(diǎn)(1,
3
3
)的直線l截圓所得弦長(zhǎng)為2
3
,求直線l的方程;
(3)設(shè)圓O與x軸的負(fù)半軸的交點(diǎn)為A,過(guò)點(diǎn)A作兩條斜率分別為k1,k2的直線交圓O于B,C兩點(diǎn),且k1k2=-2,試證明直線BC恒過(guò)一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
分析:(1)由圓O與直線相切,得到圓心到切線的距離等于圓的半徑,列出關(guān)于r的方程,求出方程的解得到r的值,即可確定出圓的方程;
(2)分兩種情況考慮:當(dāng)直線l斜率不存在時(shí),直線x=1滿足題意;當(dāng)直線l斜率存在時(shí),設(shè)出直線方程,根據(jù)直線與圓相切,得到圓心到直線的距離d=r,列出關(guān)于k的方程,求出方程的解得到k的值,確定出此時(shí)直線l的方程,綜上,得到滿足題意直線l的方程;
(3)根據(jù)題意求出A的坐標(biāo),設(shè)出直線AB的解析式,與圓方程聯(lián)立消去y得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示出兩根之積,將A的橫坐標(biāo)代入表示出B的橫坐標(biāo),進(jìn)而表示出B的縱坐標(biāo),確定出B坐標(biāo),由題中k1k2=-2,表示出C坐標(biāo),進(jìn)而表示出直線BC的解析式,即可確定出直線BC恒過(guò)一個(gè)定點(diǎn),求出定點(diǎn)坐標(biāo)即可.
解答:解:(1)∵圓O:x2+y2=r2(r>0)與直線x-y+2
2
=0相切,
∴圓心O到直線的距離d=
2
2
12+(-1)2
=2=r,
∴圓O的方程為x2+y2=4;   
(2)若直線l的斜率不存在,直線l為x=1,
此時(shí)直線l截圓所得弦長(zhǎng)為2
3
,符合題意;
若直線l的斜率存在,設(shè)直線為y-
3
3
=k(x-1),即3kx-3y+
3
-3k=0,
由題意知,圓心到直線的距離為d=
|
3
-3k|
9k2+9
=1,解得:k=-
3
3
,
此時(shí)直線l為x+
3
y-2=0,
則所求的直線為x=1或x+
3
y-2=0;
(3)由題意知,A(-2,0),設(shè)直線AB:y=k1(x+2),
與圓方程聯(lián)立得:
y=k1(x+2)
x2+y2=4
,
消去y得:(1+k12)x2+4k12x+(4k12-4)=0,
∴xA•xB=
4k12-4
1+k12
,
∴xB=
2-2k12
1+k12
,yB=
4k1 
1+k12
,即B(
2-2k12
1+k12
4k1 
1+k12
),
∵k1k2=-2,用
-2
k1
代替k1得:C(
2k12-8
4+k12
,
-8k1 
4+k12
),
∴直線BC方程為y-
-8k1 
4+k12
=
4k1 
1+k12
-
-8k1 
4+k12
2-2k12
1+k12
-
2k12-8
4+k12
(x-
2k12-8
4+k12
),
即y-
-8k1 
4+k12
=
3k1
2-k12
(x-
2k12-8
4+k12
),
整理得:y=
3k1
2-k12
x+
2k1
2-k12
=
3k1
2-k12
(x+
2
3
),
則直線BC定點(diǎn)(-
2
3
,0).
點(diǎn)評(píng):此題考查了圓的標(biāo)準(zhǔn)方程,以及直線與圓的位置關(guān)系,涉及的知識(shí)有:韋達(dá)定理,直線的兩點(diǎn)式方程,點(diǎn)到直線的距離公式,以及恒過(guò)定點(diǎn)的直線方程,利用了分類(lèi)討論的思想,是一道綜合性較強(qiáng)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案