對(duì)實(shí)驗(yàn)中學(xué)高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如圖:
(1)求出表中M,p及圖中a的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求兩人來(lái)自同一小組的概率.

(1)M=40,p=0.1,a=0.12;(2)兩人來(lái)自同一小組的概率為.

解析試題分析:(1)由頻率和為1求出p,再根據(jù)比例可求表中M及圖中a的值;
(2)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人共15種可能,兩人來(lái)自同一小組有7種可能,所以概率為.
(1)由分組知內(nèi)的頻數(shù)為10,頻率為0.25,所以,M=40.........1分
P=1-0.25-0.6-0.05=0.1...........2分   ...........3分
2)m=40-10-24-2=4,社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有m+2=6............4分
,設(shè)為,小組有2人,設(shè)為,則任選2人,
共有15種:
.................6分
來(lái)自于同一組的有7種:............8分
在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求兩人來(lái)自同一小組的概率.P= ..................9分
考點(diǎn):頻率與概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)每個(gè)工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別為各人是否需使用設(shè)備相互獨(dú)立.
(1)求同一工作日至少3人需使用設(shè)備的概率;
(2)X表示同一工作日需使用設(shè)備的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校一位教師要去某地參加全國(guó)數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車(chē)、輪船、汽車(chē)、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車(chē)或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫(xiě)程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時(shí),根據(jù)表中的數(shù)據(jù),分別寫(xiě)出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫(xiě)的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和個(gè)黑球(為正整數(shù)).現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球,若取出的4個(gè)球均為黑球的概率為,求
(1)的值;
(2)取出的4個(gè)球中黑球個(gè)數(shù)大于紅球個(gè)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的降水量X(單位:mm)對(duì)工期的影響如下表:

降水量X




工期延誤天數(shù)
0
2
6
10
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9.求:
(1)工期延誤天數(shù)的均值與方差;(2)在降水量X至少是300的條件下,工期延誤不超過(guò)6天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體 和(是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取個(gè)元素組成樣本.用表示元素同時(shí)出現(xiàn)在樣本中的概率.
(1)求的表達(dá)式(用表示);
(2)求所有的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球得2分,取出一個(gè)藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任取(有放回,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此兩球所得分?jǐn)?shù)之和,求ξ分布列;
(2)從該袋子中任取(且每球取到的機(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若E(η)=,V(η)=,求a∶b∶c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店試銷(xiāo)某種商品20天,獲得如下數(shù)據(jù):

日銷(xiāo)售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷(xiāo)結(jié)束后(假設(shè)該商品的日銷(xiāo)售量的分布規(guī)律不變).設(shè)某天開(kāi)始營(yíng)業(yè)時(shí)由該商品3件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率.
(1)求當(dāng)天商店不進(jìn)貨的概率;
(2)記X為第二天開(kāi)始營(yíng)業(yè)時(shí)該商品視為件數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案