已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*有Sn=an-,且1<Sk<12,則k的值為(  )

A.2 B.2或4 C.3或4 D.6

 

B

【解析】本題考查等比數(shù)列的前n項(xiàng)和,考查考生對(duì)數(shù)列知識(shí)的綜合運(yùn)用能力,屬于中檔題.首先要根據(jù)Sn=an-,推出數(shù)列{an}是等比數(shù)列并求出其通項(xiàng)公式,然后用前n項(xiàng)和公式表達(dá)出Sn,再對(duì)選項(xiàng)中k的值逐一進(jìn)行驗(yàn)證.

∵a1=a1-,∴a1=-2.∵an+1=Sn+1-Sn=(an+1-an),∴an+1=-2an,數(shù)列{an}是以-2為首項(xiàng),-2為公比的等比數(shù)列,∴an=(-2)n,Sn=(-2)n-.逐一檢驗(yàn)即可知k=4或2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:選擇題

已知a<0,-1<b<0,那么下列不等式成立的是(  )

A.a(chǎn)>ab>ab2 B.a(chǎn)b2>ab>a

C.a(chǎn)b>a>ab2 D.a(chǎn)b>ab2>a

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則=(  )

A.2 B. C. D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足=3n-2.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:填空題

數(shù)列{an}中,a1=,前n項(xiàng)的和Sn=n2an,則an+1=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題

投擲兩顆骰子,得到其向上的點(diǎn)數(shù)分別為m和n,則復(fù)數(shù)(m+ni)(n-mi)為實(shí)數(shù)的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題

設(shè)復(fù)數(shù)z=-isinθ,其中i為虛數(shù)單位,θ∈[-],則|z|的取值范圍是(  )

A.[1,] B.[1,]

C.[] D.[,]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題

已知平面向量a,b,|a|=1,|b|=,且|2a+b|=,則向量a與向量a+b的夾角為(  )

A. B. C. D.π

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-8解三角形應(yīng)用舉例(解析版) 題型:解答題

如圖所示,在四邊形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形.

(1)將四邊形ABCD的面積S表示為θ的函數(shù);

(2)求S的最大值及此時(shí)θ角的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案