【題目】若拋物線y2=2px上恒有關于直線x+y﹣1=0對稱的兩點A,B,則p的取值范圍是( )
A.(﹣ ,0)
B.(0, )
C.(0, )
D.(﹣∞,0)∪( ,+∞)
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù) 的圖象,可以將函數(shù) 的圖象( )
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】F1 , F2分別是雙曲線 ﹣ =1(a,b>0)的左右焦點,點P在雙曲線上,滿足 =0,若△PF1F2的內(nèi)切圓半徑與外接圓半徑之比為 ,則該雙曲線的離心率為( )
A.
B.
C. +1
D. +1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個端點到右焦點的距離為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ )的圖象為M,則下列結(jié)論中正確的是( )
A.圖象M關于直線x=﹣ 對稱
B.由y=2sin2x的圖象向左平移 得到M
C.圖象M關于點(﹣ ,0)對稱
D.f(x)在區(qū)間(﹣ , )上遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤ ,|φ2|≤ . 命題①:若直線x=φ是函數(shù)f(x)和g(x)的對稱軸,則直線x= kπ+φ(k∈Z)是函數(shù)g(x)的對稱軸;
命題②:若點P(φ,0)是函數(shù)f(x)和g(x)的對稱中心,則點Q( +φ,0)(k∈Z)是函數(shù)f(x)的中心對稱.( )
A.命題①②都正確
B.命題①②都不正確
C.命題①正確,命題②不正確
D.命題①不正確,命題②正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)集R,集合A={x|1<x<3},集合B={x|y= },則A∩(RB)=( )
A.{x|1<x≤2}
B.{x|1<x<3}
C.{x|2≤x<3}
D.{x|1<x<2}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域為[ , ],則區(qū)間[m,n]長度的最大值為( )
A.1
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com