已知三條直線(xiàn)ax+2y+8=0,4x+3y=10和2x-y=10中沒(méi)有任何兩條平行,但它們不能構(gòu)成三角形的三邊,則實(shí)數(shù)a的值為_(kāi)_______.

-1
分析:由已知可得直線(xiàn)ax+2y+8=0必經(jīng)過(guò)4x+3y=10和2x-y=10的交點(diǎn),求出即可.
解答:由三條直線(xiàn)ax+2y+8=0,4x+3y=10和2x-y=10中沒(méi)有任何兩條平行,但它們不能構(gòu)成三角形的三邊,
則直線(xiàn)ax+2y+8=0必經(jīng)過(guò)4x+3y=10和2x-y=10的交點(diǎn).
聯(lián)立解得
把x=4,y=-2代入ax+2y+8=0得a=-1.
故答案為-1.
點(diǎn)評(píng):正確理解題意是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫(xiě)出必要的推理與演算過(guò)程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線(xiàn)C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線(xiàn)C上的點(diǎn)到直線(xiàn)x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:y=ax+1-a(a∈R),若存在實(shí)數(shù)a使得一條曲線(xiàn)與直線(xiàn)l有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線(xiàn)段的長(zhǎng)度恰好等于|a|,則稱(chēng)此曲線(xiàn)為直線(xiàn)l的“絕對(duì)曲線(xiàn)”.下面給出的三條曲線(xiàn)方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直線(xiàn)l的“絕對(duì)曲線(xiàn)”有
 
.(填寫(xiě)全部正確選項(xiàng)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案