【題目】如圖,設直線:,:.點的坐標為.過點的直線的斜率為,且與,分別交于點,(,的縱坐標均為正數(shù)).
(1)求實數(shù)的取值范圍;
(2)設,求面積的最小值;
(3)是否存在實數(shù),使得的值與無關?若存在,求出所有這樣的實數(shù);若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為,,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當取最小值5時,的最大值為( )
A. B. C. D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,若,就稱甲乙“心有靈屏”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線相交于兩點,設點,已知,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A,B,C,D是直角坐標系中不同的四點,若,,且,則下列說法正確的是( ),
A.C可能是線段AB的中點
B.D可能是線段AB的中點
C.C、D可能同時在線段AB上
D.C、D不可能同時在線段AB的延長線上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個) | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考數(shù)據(jù),)
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設,若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】20世紀70年代,流行一種游戲——角谷猜想,規(guī)則如下:任意寫出一個自然數(shù),按照以下的規(guī)律進行變換,如果是奇數(shù),則下一步變成;如果是偶數(shù),則下一步變成,這種游戲的魅力在于無論你寫出一個多么龐大的數(shù)字,最后必然會落在谷底,下列程序框圖就是根據(jù)這個游戲而設計的,如果輸出的的值為6,則輸入的值可以為( )
A. 5或16B. 16C. 5或32D. 4或5或32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的參數(shù)方程;
(2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com