(本題滿分12分)
某班一信息奧賽同學編了下列運算程序,將數(shù)據(jù)輸入滿足如下性質(zhì):
①輸入1時,輸出結(jié)果是;
②輸入整數(shù)時,輸出結(jié)果是將前一結(jié)果先乘以3n-5,再除以3n+1.
(1) 求f(2),f(3),f(4);
(2) 試由(1)推測f(n)(其中)的表達式,并給出證明.
(1);;.
(2)猜想:(其中),以下用數(shù)學歸納法證明:見解析。
【解析】本試題主要是考查了數(shù)列的歸納猜想思想的運用,以及運用數(shù)學歸納法求證恒等式的綜合運用。
(1)由題設條件知f(1)= ,=,對于n令值,然后得到前幾個值。
(2)猜想:(其中)并運用數(shù)學歸納法,運用兩步來證明其成立。
解:由題設條件知f(1)= ,=,
;
;
. ………………………………3分
(2)猜想:(其中)……………………5分
以下用數(shù)學歸納法證明:
(1) 當時,,
所以此時猜想成立。 ………………………………6分
(2) 假設時,成立
那么時,
……………9分
所以時,猜想成立。
由(1)(2)知,猜想:(其中)成立。
…………………………12分
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設,數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com