如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

 

(1)求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

【答案】

(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.

故橢圓方程為=1.

(2)由點B(4,yB)在橢圓上,得|F2B|=|yB|=.因為橢圓右準線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(-x1),|F2C|=(-x2),

由|F2A|、|F2B|、|F2C|成等差數(shù)列,得

(-x1)+(-x2)=2×,由此得出:x1+x2=8.

設(shè)弦AC的中點為P(x0,y0),則x0==4.

(3)解法一:由A(x1,y1),C(x2,y2)在橢圓上.

 
                 

①-②得9(x12-x22)+25(y12-y22)=0,

即9×=0(x1≠x2)

 (k≠0)代入上式,

得9×4+25y0(-)=0

(k≠0)

即k=y0(當k=0時也成立).

由點P(4,y0)在弦AC的垂直平分線上,得y0=4k+m,所以m=y0-4k=y0y0=-y0.

由點P(4,y0)在線段BB′(B′與B關(guān)于x軸對稱)的內(nèi)部,

得-<y0,所以-<m<.

解法二:因為弦AC的中點為P(4,y0),所以直線AC的方程為

y-y0=-(x-4)(k≠0)                          ③

將③代入橢圓方程=1,得

(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0

所以x1+x2==8,解得k=y0.(當k=0時也成立)

(以下同解法一).

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件: |F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山東省高二上學期12月月考理科數(shù)學 題型:解答題

.(本小題滿分12分).

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

 

 

(1) 求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山東省高二12月月考理科數(shù)學 題型:解答題

(本小題滿分12分).

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

(1)求該弦橢圓的方程;

(2)求弦AC中點的橫坐標;

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

查看答案和解析>>

同步練習冊答案