函數(shù)C:y=x2的零點所在的大致區(qū)間是


  1. A.
    (-1,1)
  2. B.
    (2,3)
  3. C.
    (3,4)
  4. D.
    (-2,-1)
A
分析:根據(jù)要求函數(shù)的零點,使得函數(shù)等于0,解出自變量x的值,在四個選項中找出零點所在的區(qū)間,得到結(jié)果.
解答:要求y=x2的零點,
只要使得x2=0,
∴x=0,
∴函數(shù)的零點位于(-1,1)
故選A.
點評:本題考查函數(shù)的零點的判定定理,本題解題的關(guān)鍵是使得函數(shù)等于0,解出結(jié)果,因為所給的函數(shù)比較簡單,能夠直接做出結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中(1)若f(x)=2cos2
x
2
-1
,則f(x+π)=f(x)對?x∈R恒成立.
(2)△ABC中,A>B是sinA>sinB的充要條件.
(3)若
a
,
b
,
c
為非零向量,且
a
b
=
a
c
,則
b
=
c

(4)要得到函數(shù)y=sin
x
2
的圖象,只需將函數(shù)y=sin(
x
2
-
π
4
)
的圖象向右平移
π
2
個單位,其中真命題的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:
①設(shè)
a
、
b
、
c
是互不共線的非零向量,則(
a
b
c
-(
c
a
b
=
0
;
②“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)單調(diào)遞增”的充分不必要條件;
③已知α,β∈R,則“α=β”是“tanα=tanβ”的充要條件;
④函數(shù)f(x)=2x-x2的在(1,3)上至少一個零點;
x-1
(x-2)≥0
的解集為[2,+∞);
⑥函數(shù)y=x3在x=0處切線不存在.
其中正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-x+n
x2+1
(n∈N*,y≠1)的最小值為an,最大值為bn,且cn=4(anbn-
1
2
).?dāng)?shù)列{cn}的前n項和為Sn
(1)請用判別式法求a1和b1
(2)求數(shù)列{cn}的通項公式cn;
(3)若{dn}為等差數(shù)列,且dn=
Sn
n+c
(c為非零常數(shù)),設(shè)f(n)=
dn
(n+36)dn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下結(jié)論:(1)x,y∈R,若x2+y2=0,則x=0或y=0的否命題是假命題;
(2)若非零向量
a
,
b
,
c
兩兩成的夾角均相等,則夾角為0°或120°
(3)若(1+x)10=a0+a1x+a2x2+…+a10x10,則a0+a1+2a2+3a3+…10a10=10×29
(4)實數(shù)x,y滿足4x2-5xy+4y2=5,設(shè)S=x2+y2,則
1
Smax
+
1
Smin
=
7
5

(5)函數(shù)f(x)=
sinx,(sinx≤cosx)
cosx,(sinx>cosx)
為周期函數(shù),且最小正周期T=2π
其中正確的結(jié)論的序號是:
(1)(5)
(1)(5)
(寫出所有正確的結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案