已知在等比數(shù)列中,,且的等差中項.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求的前項和.

(I);(II)。

解析試題分析:(I)設等比數(shù)列的公比為
的等差中項
                 2分
                            4分
             6分
(II)
.    8分
   9分
       12分
考點:本題主要考查等差中項、等比數(shù)列的的基礎知識,“分組求和法”。
點評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎知識,本解答從確定通項公式入手,明確了所研究數(shù)列的特征。“分組求和法”、“錯位相消法”、“裂項相消法”是高考常常考到數(shù)列求和方法。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列的各項均為正數(shù),
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設.證明:為等差數(shù)列,并求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列的首項為,前項和為,且的等差中項
(Ⅰ)求數(shù)列的通項公式; (Ⅱ求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足: ().
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令,,如果對任意,都有
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設各項均為正數(shù)的等比數(shù)列中,.設.
(1)求數(shù)列的通項公式;   
(2)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和
(1)證明數(shù)列是等比數(shù)列;
(2)若,且,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的各項均為正數(shù),Sn為其前n項和,對于任意,滿足關系.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)在正數(shù)數(shù)列中,設,求數(shù)列中的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設遞增等比數(shù)列{}的前n項和為,且=3,=13,數(shù)列{}滿足,點P()在直線x-y+2=0上,n∈N﹡.
(Ⅰ)求數(shù)列{},{}的通項公式;
(Ⅱ)設,數(shù)列{}的前n項和,若>2a-1恒成立(n∈N﹡),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共13分)已知數(shù)列中,,是數(shù)列的前項和,且.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若 是數(shù)列的前項和,求.

查看答案和解析>>

同步練習冊答案