解方程:4x-3×2x-4=0.
考點(diǎn):有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)
專題:計(jì)算題
分析:直接求解關(guān)于2x的一元二次方程,得到2x=-1或2x=4,舍去負(fù)值后解指數(shù)方程求得x的值.
解答: 解:由4x-3×2x-4=0,得
(2x2-3×2x-4=0,解得:2x=-1(舍),或2x=4,
由2x=4,得x=2.
∴方程4x-3×2x-4=0的解為x=2.
點(diǎn)評(píng):本題考查有理指數(shù)冪的運(yùn)算性質(zhì),考查一元二次方程的解法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示圖形中是四棱錐三視圖的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(0,
π
2
),sinα-sinβ=-
1
2
  , cosα-cosβ=
1
2
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線E:y2=2px,在拋物線上任意畫一個(gè)點(diǎn)S,度量點(diǎn)S的坐標(biāo)(xS,yS),如圖.
(Ⅰ)拖動(dòng)點(diǎn)S,發(fā)現(xiàn)當(dāng)xS=4時(shí),yS=4,試求拋物線E的方程;
(Ⅱ)設(shè)拋物線E的頂點(diǎn)為A,焦點(diǎn)為F,構(gòu)造直線SF交拋物線E于不同兩點(diǎn)S、T,構(gòu)造直線AS、AT分別交準(zhǔn)線于M、N兩點(diǎn),構(gòu)造直線MT、NS.經(jīng)觀察得:沿著拋物線E,無論怎樣拖動(dòng)點(diǎn)S,恒有MT∥NS.請(qǐng)你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線E的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)F”改變?yōu)槠渌岸c(diǎn)G(g,0)(g≠0)”,其余條件不變,發(fā)現(xiàn)“MT與NS不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“MT∥NS”成立?如果可以,請(qǐng)寫出相應(yīng)的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
,g(x)=ex(ax+1),其中a為常數(shù).
(Ⅰ)若y=f(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)g(x)在區(qū)間(1,2)上不是單調(diào)函數(shù)時(shí),試求函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有7道題,其中5道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(1)所取的兩道題都是甲類題的概率;
(2)所取的兩道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),過點(diǎn)A(-a,0),B(0,b)的直線的傾斜角為
π
6
,原點(diǎn)到該直線的距離為
2
2

(1)求橢圓的方程;
(2)直線y=kx+2與橢圓交于P,Q兩點(diǎn),點(diǎn)S是P,Q兩點(diǎn)的中點(diǎn),問是否存在實(shí)數(shù)k,使得kSO•kPQ為一個(gè)定值,若存在,請(qǐng)證明,若不存,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先作函數(shù)y=sinx的圖象關(guān)于y軸的對(duì)稱圖象,再將所得圖象向右平移
π
3
個(gè)單位,再向上平移1個(gè)單位長度,所得圖象的函數(shù)解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-|x+a|+2a<0,a∈R},B={x|x<2}.若A≠∅且A⊆B,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案