已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為和,且||=2,
點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以 為圓心且與直線相切圓的方程.
(1);(2).
【解析】
試題分析:本題主要考查橢圓的定義和方程、圓的方程、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力.第一問,利用,得,即,再根據(jù)點(diǎn)在橢圓上,得到和的值,從而得到橢圓方程;第二問,分2種情況進(jìn)行討論,當(dāng)直線垂直x軸時(shí),的面積很容易求出,與已知面積不相等,所以舍掉,當(dāng)直線不垂直x軸時(shí),設(shè)出直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理,求出,再數(shù)形結(jié)合求出圓的半徑,從而求的面積,解出k的值,確定半徑的值,即可求出圓的方程.
試題解析:(1)橢圓C的方程為 ..(4分)
(2)①當(dāng)直線⊥x軸時(shí),可得,,的面積為3,不符合題意. (6分)
②當(dāng)直線與x軸不垂直時(shí),設(shè)直線的方程為y=k(x+1).代入橢圓方程得:
,顯然>0成立,設(shè)A,B,則
,,可得|AB|= ..(9分)
又圓的半徑,∴的面積=,化簡(jiǎn)得:,得k=±1,∴r =,圓的方程為 ..(12分)
考點(diǎn):1.橢圓的定義和方程;2.圓的方程;3.點(diǎn)到直線的距離公.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
6
| ||
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 |
5 |
4 |
3 |
MB |
MA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市海淀區(qū)高三下學(xué)期一模數(shù)學(xué)(文)測(cè)試 題型:解答題
(本小題滿分13分)
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在軸上,離心率為,且點(diǎn)在該橢圓上。
(I)求橢圓C的方程;
(II)過橢圓C的左焦點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線相切的圓的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com