7.在△ABC中,已知∠A=$\frac{2}{3}$π,|BC|=7,|AC|=5,則|AB|=( 。
A.3B.3$\sqrt{2}$C.8D.8$\sqrt{3}$

分析 根據(jù)余弦定理|BC|2=|AC|2+|AB|2-2|AB•||AC|cosA,即可求得|AB|的值.

解答 解:由余弦定理可知:
|BC|2=|AC|2+|AB|2-2|AB•||AC|cosA,
即49=25+|AB|2-10|AB|×(-$\frac{1}{2}$),
整理得:|AB|2+5|AB|-24=0,解得|AB|=3或|AB|=-8,
∴|AB|=3,
故答案選:A.

點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=x3-x2f'(1)+1,f'(x)為f(x)的導(dǎo)函數(shù),則f(1)=( 。
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的首項(xiàng)a1=3,且滿足an+1=3an+2×3n+1,(n∈N*).
(1)設(shè)bn=$\frac{{a}_{n}}{{3}^{n}}$,判斷數(shù)列{bn}是否為等差數(shù)列或等比數(shù)列,并證明你的結(jié)論;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an,(n∈N*),a1=2,則數(shù)列{an}通項(xiàng)公式an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),它的一個(gè)頂點(diǎn)到一條漸近線的距離為d,已知d≥$\frac{\sqrt{2}}{3}$c(c為雙曲線的半焦距長),則雙曲線的離心率的取值范圍為( 。
A.[$\frac{\sqrt{6}}{2}$,2]B.[$\frac{\sqrt{6}}{2}$,$\sqrt{3}$]C.($\sqrt{2}$,$\sqrt{3}$]D.(1,$\frac{\sqrt{6}}{2}$)∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)對(duì)于任意實(shí)數(shù)x滿足條件f(x+2)=-$\frac{1}{f(x)}$,若f(2)=-4,則f(f(6))=( 。
A.4B.-4C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$上的正射影$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a=20.3,b=30.2,c=70.1,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

同步練習(xí)冊(cè)答案