如圖所示,已知⊙O1與⊙O2相交于A,B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1,⊙O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.

(1)求證:AD∥EC;

(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長

答案:
解析:

  (1)證明:連接AB,∵AC是⊙O1的切線,∴∠BAC=∠D,

  又∵∠BAC=∠E,∴∠D=∠E.∴AD∥EC  (4分)

  (2)設(shè)BP=x,PE=y(tǒng),∵PA=6,PC=2,∴xy=12 、

  

  ∵AD是⊙O2的切線,

  ∴AD2=DB·DE=9×16,∴AD=12.(6分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(I)求證:AD∥EC;
(II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模) (10分) 如圖所示,已知⊙O1與⊙O2相交于A,B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1,⊙O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.

   (1)求證:AD∥EC;

   (2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知⊙O1與⊙O2相交于A,B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1,⊙O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.

(1)求證:AD∥EC;

(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省六校聯(lián)盟高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(I)求證:AD∥EC;
(II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省大連市高三雙基測(cè)試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(I)求證:AD∥EC;
(II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案