精英家教網 > 高中數學 > 題目詳情

已知f(x)是周期為2的奇函數,當x∈(0,1)時,f(x)=2x,則f數學公式


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
C
分析:先求出-5 <-4,∈(0,1),由f(x)是周期為2的奇函數,可得f =-f(),根據 當x∈(0,1)時,f(x)=2x ,可求得-f() 的值,從而得到要求的式子的值.
解答:∵=,,∴-5 <-4,
∴-1<<0,且 =,故 =∈(0,1).
由f(x)是周期為2的奇函數,可得f =f()=f ()=-f(-)=-f().
∵當x∈(0,1)時,f(x)=2x ,
∴-f()=-=-
=-f()=-
故選C.
點評:本題主要考查函數的周期性和奇偶性的綜合應用,對數恒等式,體現了轉化的數學思想,求得=-f(),是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是周期為2的奇函數,當0<x<1時,f(x)=lgx.設a=f(
6
5
),b=f(
3
2
)
,c=f(
5
2
)
,則( 。
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是周期為2的奇函數,且當x∈(0,1)時,f(x)=2x,則f(log0.57)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是周期為2的偶函數.當0≤x≤1時,f(x)的圖象是如圖中的線段AB,那么f(
4
3
)
=
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是周期為2的奇函數,當x∈(0,1)時,f(x)=2x,則f(log
1
2
23)
值(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•山西模擬)已知f(x)是周期為8的奇函數,當x∈[0,2]時,f(x)=2x,則f(-9)等于( 。

查看答案和解析>>

同步練習冊答案