|
|
已知函數(shù)f(x)=x2-alnx(常數(shù)a>0).
(Ⅰ)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(1,ea)上零點(diǎn)的個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù)).
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在每個(gè)三角形的頂點(diǎn)處各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別成等差數(shù)列.若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為l,則所有頂點(diǎn)上的數(shù)之和等于________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)實(shí)數(shù)x,y滿足不等式組若x,y為整數(shù),則3x+4y的最小值是
|
[ ] |
A. |
14
|
B. |
16
|
C. |
17
|
D. |
19
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)與g(x)=log2x則函數(shù)h(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
化簡(jiǎn)的結(jié)果為
|
[ ] |
A. |
1+2i
|
B. |
1–2i
|
C. |
2+i
|
D. |
2–i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)實(shí)數(shù)x,y滿足不等式組若x,y為整數(shù),則3x+4y的最小值是
|
[ ] |
A. |
14
|
B. |
16
|
C. |
17
|
D. |
19
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知全集U=R,函數(shù)的定義域?yàn)榧螦,函數(shù)y=log2(x+2)的定義域?yàn)榧螧,則集合(CUA)∩B=
|
[ ] |
A. |
(-2,1)
|
B. |
(-2,-1]
|
C. |
(-∞,-2)
|
D. |
(-1,+∞)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,且橢圓E上一點(diǎn)到兩個(gè)焦點(diǎn)距離之和為4;l1,l2是過點(diǎn)P(0,2)且相互垂直的兩條直線,l1交橢圓E于A,B兩點(diǎn),l2交橢圓E于C,D兩點(diǎn),AB,CD的中點(diǎn)分別為M,N.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)求直線l1的斜率k的取值范圍;
(3)求證直線OM與直線ON的斜率乘積為定值.
|
|
|
查看答案和解析>>